188 lines
7.8 KiB
Python
188 lines
7.8 KiB
Python
import pickle
|
|
import warnings
|
|
from typing import Union, List
|
|
from os import PathLike
|
|
from pathlib import Path
|
|
import time
|
|
|
|
import pandas as pd
|
|
|
|
from stable_baselines3.common.callbacks import CallbackList
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
|
|
from environments.factory.factory_dirt_item import DirtItemFactory
|
|
from environments.factory.factory_item import ItemFactory, ItemProperties
|
|
from environments.factory.factory_dirt import DirtProperties, DirtFactory
|
|
from environments.helpers import IGNORED_DF_COLUMNS
|
|
from environments.logging.monitor import MonitorCallback
|
|
from environments.logging.plotting import prepare_plot
|
|
from environments.logging.recorder import RecorderCallback
|
|
from environments.utility_classes import MovementProperties
|
|
|
|
warnings.filterwarnings('ignore', category=FutureWarning)
|
|
warnings.filterwarnings('ignore', category=UserWarning)
|
|
|
|
|
|
def combine_runs(run_path: Union[str, PathLike]):
|
|
run_path = Path(run_path)
|
|
df_list = list()
|
|
for run, monitor_file in enumerate(run_path.rglob('monitor_*.pick')):
|
|
with monitor_file.open('rb') as f:
|
|
monitor_df = pickle.load(f)
|
|
|
|
monitor_df['run'] = run
|
|
monitor_df = monitor_df.fillna(0)
|
|
df_list.append(monitor_df)
|
|
|
|
df = pd.concat(df_list, ignore_index=True)
|
|
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run'}).sort_values(['Run', 'Episode'])
|
|
columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS]
|
|
|
|
roll_n = 50
|
|
|
|
non_overlapp_window = df.groupby(['Run', 'Episode']).rolling(roll_n, min_periods=1).mean()
|
|
|
|
df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run'],
|
|
value_vars=columns, var_name="Measurement",
|
|
value_name="Score")
|
|
|
|
if df_melted['Episode'].max() > 800:
|
|
skip_n = round(df_melted['Episode'].max() * 0.02)
|
|
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
|
|
|
|
prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted)
|
|
print('Plotting done.')
|
|
|
|
|
|
def compare_runs(run_path: Path, run_identifier: int, parameter: Union[str, List[str]]):
|
|
run_path = Path(run_path)
|
|
df_list = list()
|
|
parameter = [parameter] if isinstance(parameter, str) else parameter
|
|
for path in run_path.iterdir():
|
|
if path.is_dir() and str(run_identifier) in path.name:
|
|
for run, monitor_file in enumerate(path.rglob('monitor_*.pick')):
|
|
with monitor_file.open('rb') as f:
|
|
monitor_df = pickle.load(f)
|
|
|
|
monitor_df['run'] = run
|
|
monitor_df['model'] = path.name.split('_')[0]
|
|
monitor_df = monitor_df.fillna(0)
|
|
df_list.append(monitor_df)
|
|
|
|
df = pd.concat(df_list, ignore_index=True)
|
|
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run', 'model': 'Model'})
|
|
columns = [col for col in df.columns if col in parameter]
|
|
|
|
last_episode_to_report = min(df.groupby(['Model'])['Episode'].max())
|
|
df = df[df['Episode'] < last_episode_to_report]
|
|
|
|
roll_n = 40
|
|
non_overlapp_window = df.groupby(['Model', 'Run', 'Episode']).rolling(roll_n, min_periods=1).mean()
|
|
|
|
df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run', 'Model'],
|
|
value_vars=columns, var_name="Measurement",
|
|
value_name="Score")
|
|
|
|
if df_melted['Episode'].max() > 100:
|
|
skip_n = round(df_melted['Episode'].max() * 0.02)
|
|
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
|
|
|
|
style = 'Measurement' if len(columns) > 1 else None
|
|
prepare_plot(run_path / f'{run_identifier}_compare_{parameter}.png', df_melted, hue='Model', style=style)
|
|
print('Plotting done.')
|
|
|
|
|
|
def make_env(env_kwargs_dict):
|
|
|
|
def _init():
|
|
with ItemFactory(**env_kwargs_dict) as init_env:
|
|
return init_env
|
|
|
|
return _init
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# combine_runs(Path('debug_out') / 'A2C_1630314192')
|
|
# exit()
|
|
|
|
# compare_runs(Path('debug_out'), 1623052687, ['step_reward'])
|
|
# exit()
|
|
|
|
from stable_baselines3 import PPO, DQN, A2C
|
|
from algorithms.reg_dqn import RegDQN
|
|
# from sb3_contrib import QRDQN
|
|
|
|
dirt_props = DirtProperties(clean_amount=2, gain_amount=0.1, max_global_amount=20,
|
|
max_local_amount=1, spawn_frequency=3, max_spawn_ratio=0.05,
|
|
dirt_smear_amount=0.0, agent_can_interact=True)
|
|
item_props = ItemProperties(n_items=5, agent_can_interact=True)
|
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
|
allow_square_movement=True,
|
|
allow_no_op=False)
|
|
train_steps = 8e5
|
|
time_stamp = int(time.time())
|
|
|
|
out_path = None
|
|
|
|
for modeL_type in [A2C, PPO, DQN]: # ,RegDQN, QRDQN]:
|
|
for seed in range(3):
|
|
env_kwargs = dict(n_agents=1,
|
|
item_properties=item_props,
|
|
# dirt_properties=dirt_props,
|
|
movement_properties=move_props,
|
|
pomdp_r=2, max_steps=400, parse_doors=False,
|
|
level_name='rooms', frames_to_stack=3,
|
|
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
|
|
cast_shadows=True, doors_have_area=False, env_seed=seed, verbose=False,
|
|
)
|
|
|
|
if modeL_type.__name__ in ["PPO", "A2C"]:
|
|
kwargs = dict(ent_coef=0.01)
|
|
env = SubprocVecEnv([make_env(env_kwargs) for _ in range(1)], start_method="spawn")
|
|
elif modeL_type.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
|
env = make_env(env_kwargs)()
|
|
kwargs = dict(buffer_size=50000,
|
|
learning_starts=64,
|
|
batch_size=64,
|
|
target_update_interval=5000,
|
|
exploration_fraction=0.25,
|
|
exploration_final_eps=0.025
|
|
)
|
|
else:
|
|
raise NameError(f'The model "{modeL_type.__name__}" has the wrong name.')
|
|
|
|
model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu', **kwargs)
|
|
|
|
out_path = Path('debug_out') / f'{model.__class__.__name__}_{time_stamp}'
|
|
|
|
# identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
|
|
identifier = f'{seed}_{model.__class__.__name__}_{time_stamp}'
|
|
out_path /= identifier
|
|
|
|
callbacks = CallbackList(
|
|
[MonitorCallback(filepath=out_path / f'monitor_{identifier}.pick', plotting=False),
|
|
RecorderCallback(filepath=out_path / f'recorder_{identifier}.json', occupation_map=False,
|
|
trajectory_map=False
|
|
)]
|
|
)
|
|
|
|
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
|
|
|
save_path = out_path / f'model_{identifier}.zip'
|
|
save_path.parent.mkdir(parents=True, exist_ok=True)
|
|
model.save(save_path)
|
|
param_path = out_path.parent / f'env_{model.__class__.__name__}_{time_stamp}.yaml'
|
|
try:
|
|
env.env_method('save_params', param_path)
|
|
except AttributeError:
|
|
env.save_params(param_path)
|
|
print("Model Trained and saved")
|
|
print("Model Group Done.. Plotting...")
|
|
|
|
if out_path:
|
|
combine_runs(out_path.parent)
|
|
print("All Models Done... Evaluating")
|
|
if out_path:
|
|
compare_runs(Path('debug_out'), time_stamp, 'step_reward')
|