57 lines
2.0 KiB
Python

import torch
from algorithms.marl.base_ac import BaseActorCritic, nms
from algorithms.utils import instantiate_class
from pathlib import Path
from natsort import natsorted
from algorithms.marl.memory import MARLActorCriticMemory
class LoopIAC(BaseActorCritic):
def __init__(self, cfg):
super(LoopIAC, self).__init__(cfg)
def setup(self):
self.net = [
instantiate_class(self.cfg[nms.AGENT]) for _ in range(self.n_agents)
]
self.optimizer = [
torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents)
]
def load_state_dict(self, path: Path):
paths = natsorted(list(path.glob('*.pt')))
for path, net in zip(paths, self.net):
net.load_state_dict(torch.load(path))
@staticmethod
def merge_dicts(ds): # todo could be recursive for more than 1 hierarchy
d = {}
for k in ds[0].keys():
d[k] = [d[k] for d in ds]
return d
def init_hidden(self):
ha = [net.init_hidden_actor() for net in self.net]
hc = [net.init_hidden_critic() for net in self.net]
return dict(hidden_actor=ha, hidden_critic=hc)
def forward(self, observations, actions, hidden_actor, hidden_critic):
outputs = [
net(
self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0), # agents x time
self._as_torch(actions[ag_i]).unsqueeze(0),
hidden_actor[ag_i],
hidden_critic[ag_i]
) for ag_i, net in enumerate(self.net)
]
return self.merge_dicts(outputs)
def learn(self, tms: MARLActorCriticMemory, **kwargs):
for ag_i in range(self.n_agents):
tm, net = tms(ag_i), self.net[ag_i]
loss = self.actor_critic(tm, net, **self.cfg[nms.ALGORITHM], **kwargs)
self.optimizer[ag_i].zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5)
self.optimizer[ag_i].step()