2021-06-16 23:20:40 +02:00

189 lines
6.8 KiB
Python

from typing import Tuple, NamedTuple
from collections import namedtuple, deque
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from stable_baselines3.common.utils import polyak_update
class Experience(NamedTuple):
observation: np.ndarray
next_observation: np.ndarray
action: int
reward: float
done : bool
priority: float = 1
info : dict = {}
class BaseBuffer:
def __init__(self, size: int):
self.size = size
self.experience = deque(maxlen=size)
def __len__(self):
return len(self.experience)
def add(self, experience):
self.experience.append(experience)
def sample(self, k):
sample = random.choices(self.experience, k=k)
return sample
class PERBuffer(BaseBuffer):
def __init__(self, size, alpha=0.2):
super(PERBuffer, self).__init__(size)
self.alpha = alpha
def sample(self, k):
pr = [abs(e.priority)**self.alpha for e in self.experience]
pr = np.array(pr) / sum(pr)
idxs = random.choices(range(len(self)), weights=pr, k=k)
pass
class BaseDQN(nn.Module):
def __init__(self):
super(BaseDQN, self).__init__()
self.net = nn.Sequential(
nn.Linear(3*5*5, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 9)
)
def act(self, x):
with torch.no_grad():
action = self.net(x.view(x.shape[0], -1)).argmax(-1).item()
return action
def forward(self, x):
return self.net(x.view(x.shape[0], -1))
def random_action(self):
return random.randrange(0, 5)
class BaseQlearner:
def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end,
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
self.q_net = q_net
self.target_q_net = target_q_net
self.target_q_net.load_state_dict(self.q_net.state_dict())
self.target_q_net.eval()
self.env = env
self.buffer = buffer
self.target_update = target_update
self.warmup = warmup
self.eps = 1.
self.eps_end = eps_end
self.exploration_fraction = exploration_fraction
self.batch_size = batch_size
self.gamma = gamma
self.train_every_n_steps = train_every_n_steps
self.n_grad_steps = n_grad_steps
self.lr = lr
self.reg_weight = reg_weight
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
self.device = 'cpu'
self.running_reward = deque(maxlen=10)
self.running_loss = deque(maxlen=10)
def to(self, device):
self.device = device
return self
def anneal_eps(self, step, n_steps):
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
eps = 1 + fraction * (self.eps_end - 1)
return eps
def learn(self, n_steps):
step, eps = 0, 1
while step < n_steps:
obs, done = self.env.reset(), False
total_reward = 0
while not done:
action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \
if np.random.rand() > eps else env.action_space.sample()
next_obs, reward, done, info = env.step(action)
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
self.buffer.add(experience)
# end of step routine
obs = next_obs
step += 1
total_reward += reward
eps = self.anneal_eps(step, n_steps)
if step % self.train_every_n_steps == 0:
self.train()
if step % self.target_update == 0:
self.target_q_net.load_state_dict(self.q_net.state_dict())
self.running_reward.append(total_reward)
if step % 10 == 0:
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t'
f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}')
def train(self):
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size)
obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float()
next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float()
actions = torch.tensor([e.action for e in experience]).long()
rewards = torch.tensor([e.reward for e in experience]).float()
dones = torch.tensor([e.done for e in experience]).float()
next_q_values = self.target_q_net(next_obs).detach().max(-1)[0]
target_q_values = rewards + (1. - dones) * self.gamma * next_q_values
q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0))
delta = q_values - target_q_values
loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2))
self.running_loss.append(loss.item())
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10)
self.optimizer.step()
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from algorithms.reg_dqn import RegDQN
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
#print(env.action_space)
from stable_baselines3.dqn import DQN
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025)
#print(dqn.policy)
#dqn.learn(100000)
print(env.observation_space, env.action_space)
dqn, target_dqn = BaseDQN(), BaseDQN()
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99,
train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
learner.learn(100000)