192 lines
6.9 KiB
Python
192 lines
6.9 KiB
Python
from typing import Tuple, NamedTuple
|
|
from collections import namedtuple, deque
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from stable_baselines3.common.utils import polyak_update
|
|
|
|
|
|
class Experience(NamedTuple):
|
|
observation: np.ndarray
|
|
next_observation: np.ndarray
|
|
action: int
|
|
reward: float
|
|
done : bool
|
|
priority: float = 1
|
|
info : dict = {}
|
|
|
|
|
|
class BaseBuffer:
|
|
def __init__(self, size: int):
|
|
self.size = size
|
|
self.experience = deque(maxlen=size)
|
|
|
|
def __len__(self):
|
|
return len(self.experience)
|
|
|
|
def add(self, experience):
|
|
self.experience.append(experience)
|
|
|
|
def sample(self, k):
|
|
sample = random.choices(self.experience, k=k)
|
|
return sample
|
|
|
|
|
|
class PERBuffer(BaseBuffer):
|
|
def __init__(self, size, alpha=0.2):
|
|
super(PERBuffer, self).__init__(size)
|
|
self.alpha = alpha
|
|
|
|
def sample(self, k):
|
|
pr = [abs(e.priority)**self.alpha for e in self.experience]
|
|
pr = np.array(pr) / sum(pr)
|
|
idxs = random.choices(range(len(self)), weights=pr, k=k)
|
|
pass
|
|
|
|
|
|
class BaseDQN(nn.Module):
|
|
def __init__(self):
|
|
super(BaseDQN, self).__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(3*5*5, 64),
|
|
nn.ReLU(),
|
|
nn.Linear(64, 64),
|
|
nn.ReLU(),
|
|
nn.Linear(64, 9)
|
|
)
|
|
|
|
def act(self, x):
|
|
with torch.no_grad():
|
|
action = self.net(x.view(x.shape[0], -1)).argmax(-1).item()
|
|
return action
|
|
|
|
def forward(self, x):
|
|
return self.net(x.view(x.shape[0], -1))
|
|
|
|
def random_action(self):
|
|
return random.randrange(0, 5)
|
|
|
|
|
|
class BaseQlearner:
|
|
def __init__(self, q_net, target_q_net, env, buffer, target_update, warmup, eps_end,
|
|
gamma=0.99, train_every_n_steps=4, n_grad_steps=1,
|
|
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0):
|
|
self.q_net = q_net
|
|
self.target_q_net = target_q_net
|
|
self.target_q_net.load_state_dict(self.q_net.state_dict())
|
|
self.target_q_net.eval()
|
|
self.env = env
|
|
self.buffer = buffer
|
|
self.target_update = target_update
|
|
self.warmup = warmup
|
|
self.eps = 1.
|
|
self.eps_end = eps_end
|
|
self.exploration_fraction = exploration_fraction
|
|
self.batch_size = batch_size
|
|
self.gamma = gamma
|
|
self.train_every_n_steps = train_every_n_steps
|
|
self.n_grad_steps = n_grad_steps
|
|
self.lr = lr
|
|
self.reg_weight = reg_weight
|
|
self.optimizer = torch.optim.Adam(self.q_net.parameters(), lr=self.lr)
|
|
self.device = 'cpu'
|
|
self.running_reward = deque(maxlen=10)
|
|
self.running_loss = deque(maxlen=10)
|
|
|
|
def to(self, device):
|
|
self.device = device
|
|
return self
|
|
|
|
def anneal_eps(self, step, n_steps):
|
|
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
|
|
eps = 1 + fraction * (self.eps_end - 1)
|
|
return eps
|
|
|
|
def learn(self, n_steps):
|
|
step, eps = 0, 1
|
|
while step < n_steps:
|
|
obs, done = self.env.reset(), False
|
|
total_reward = 0
|
|
while not done:
|
|
|
|
action = self.q_net.act(torch.from_numpy(obs).unsqueeze(0).float()) \
|
|
if np.random.rand() > eps else env.action_space.sample()
|
|
|
|
next_obs, reward, done, info = env.step(action)
|
|
|
|
experience = Experience(observation=obs, next_observation=next_obs, action=action, reward=reward, done=done) # do we really need to copy?
|
|
self.buffer.add(experience)
|
|
# end of step routine
|
|
obs = next_obs
|
|
step += 1
|
|
total_reward += reward
|
|
eps = self.anneal_eps(step, n_steps)
|
|
|
|
if step % self.train_every_n_steps == 0:
|
|
self.train()
|
|
if step % self.target_update == 0:
|
|
self.target_q_net.load_state_dict(self.q_net.state_dict())
|
|
|
|
|
|
self.running_reward.append(total_reward)
|
|
if step % 10 == 0:
|
|
print(f'Step: {step} ({(step/n_steps)*100:.2f}%)\tRunning reward: {sum(list(self.running_reward))/len(self.running_reward)}\t'
|
|
f' eps: {eps:.4f}\tRunning loss: {sum(list(self.running_loss))/len(self.running_loss)}')
|
|
|
|
|
|
def train(self):
|
|
for _ in range(self.n_grad_steps):
|
|
experience = self.buffer.sample(self.batch_size)
|
|
|
|
obs = torch.stack([torch.from_numpy(e.observation) for e in experience], 0).float()
|
|
next_obs = torch.stack([torch.from_numpy(e.next_observation) for e in experience], 0).float()
|
|
actions = torch.tensor([e.action for e in experience]).long()
|
|
rewards = torch.tensor([e.reward for e in experience]).float()
|
|
dones = torch.tensor([e.done for e in experience]).float()
|
|
|
|
print(rewards)
|
|
|
|
|
|
next_q_values = self.target_q_net(next_obs).detach().max(-1)[0]
|
|
target_q_values = rewards + (1. - dones) * self.gamma * next_q_values
|
|
|
|
|
|
q_values = self.q_net(obs).gather(-1, actions.unsqueeze(0))
|
|
|
|
delta = q_values - target_q_values
|
|
loss = torch.mean(self.reg_weight * q_values + torch.pow(delta, 2))
|
|
|
|
self.running_loss.append(loss.item())
|
|
|
|
# Optimize the model
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), 10)
|
|
self.optimizer.step()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
|
from algorithms.reg_dqn import RegDQN
|
|
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
|
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
|
allow_square_movement=True,
|
|
allow_no_op=False)
|
|
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=1, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False)
|
|
#print(env.action_space)
|
|
from stable_baselines3.dqn import DQN
|
|
|
|
#dqn = RegDQN('MlpPolicy', env, verbose=True, buffer_size = 50000, learning_starts = 25000, batch_size = 64, target_update_interval = 5000, exploration_fraction = 0.25, exploration_final_eps = 0.025)
|
|
#print(dqn.policy)
|
|
#dqn.learn(100000)
|
|
|
|
|
|
print(env.observation_space, env.action_space)
|
|
dqn, target_dqn = BaseDQN(), BaseDQN()
|
|
learner = BaseQlearner(dqn, target_dqn, env, BaseBuffer(50000), target_update=5000, warmup=25000, lr=1e-4, gamma=0.99,
|
|
train_every_n_steps=4, eps_end=0.05, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
|
learner.learn(100000)
|