2021-11-23 17:02:35 +01:00

140 lines
5.2 KiB
Python

from salina.agents.gyma import AutoResetGymAgent
from salina.agents import Agents, TemporalAgent
from salina.rl.functional import _index, gae
import torch
import torch.nn as nn
from torch.distributions import Categorical
from salina import TAgent, Workspace, get_arguments, get_class, instantiate_class
from pathlib import Path
import numpy as np
from tqdm import tqdm
import time
from algorithms.utils import (
add_env_props,
load_yaml_file,
CombineActionsAgent,
AutoResetGymMultiAgent,
access_str,
AGENT_PREFIX, REWARD, CUMU_REWARD, OBS, SEP
)
class A2CAgent(TAgent):
def __init__(self, observation_size, hidden_size, n_actions, agent_id):
super().__init__()
observation_size = np.prod(observation_size)
print(observation_size)
self.agent_id = agent_id
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU()
)
self.action_head = nn.Linear(hidden_size, n_actions)
self.critic_head = nn.Linear(hidden_size, 1)
def get_obs(self, t):
observation = self.get((f'env/{access_str(self.agent_id, OBS)}', t))
return observation
def forward(self, t, stochastic, **kwargs):
observation = self.get_obs(t)
features = self.model(observation)
scores = self.action_head(features)
probs = torch.softmax(scores, dim=-1)
critic = self.critic_head(features).squeeze(-1)
if stochastic:
action = torch.distributions.Categorical(probs).sample()
else:
action = probs.argmax(1)
self.set((f'{access_str(self.agent_id, "action")}', t), action)
self.set((f'{access_str(self.agent_id, "action_probs")}', t), probs)
self.set((f'{access_str(self.agent_id, "critic")}', t), critic)
if __name__ == '__main__':
# Setup workspace
uid = time.time()
workspace = Workspace()
n_agents = 2
# load config
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
add_env_props(cfg)
cfg['env'].update({'n_agents': n_agents})
# instantiate agent and env
env_agent = AutoResetGymMultiAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
)
a2c_agents = [instantiate_class({**cfg['agent'],
'agent_id': agent_id})
for agent_id in range(n_agents)]
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, *a2c_agents, CombineActionsAgent()))
acquisition_agent.seed(69)
# optimizers & other parameters
cfg_optim = cfg['algorithm']['optimizer']
optimizers = [get_class(cfg_optim)(a2c_agent.parameters(), **get_arguments(cfg_optim))
for a2c_agent in a2c_agents]
n_timesteps = cfg['algorithm']['n_timesteps']
# Decision making loop
best = -float('inf')
with tqdm(range(int(cfg['algorithm']['max_epochs'] / n_timesteps))) as pbar:
for epoch in pbar:
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True)
else:
acquisition_agent(workspace, t=0, n_steps=n_timesteps, stochastic=True)
for agent_id in range(n_agents):
critic, done, action_probs, reward, action = workspace[
access_str(agent_id, 'critic'),
"env/done",
access_str(agent_id, 'action_probs'),
access_str(agent_id, 'reward', 'env/'),
access_str(agent_id, 'action')
]
td = gae(critic, reward, done, 0.98, 0.25)
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
action_logp = _index(action_probs, action).log()
a2c_loss = action_logp[:-1] * td.detach()
a2c_loss = a2c_loss.mean()
loss = (
-0.001 * entropy_loss
+ 1.0 * critic_loss
- 0.1 * a2c_loss
)
optimizer = optimizers[agent_id]
optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), .5)
optimizer.step()
# Compute the cumulated reward on final_state
rews = ''
for agent_i in range(n_agents):
creward = workspace['env/'+access_str(agent_i, CUMU_REWARD)]
creward = creward[done]
if creward.size()[0] > 0:
rews += f'{AGENT_PREFIX}{agent_i}: {creward.mean().item():.2f} | '
"""if cum_r > best:
torch.save(a2c_agent.state_dict(), Path(__file__).parent / f'agent_{uid}.pt')
best = cum_r"""
pbar.set_description(rews, refresh=True)