527 lines
23 KiB
Python
527 lines
23 KiB
Python
import sys
|
|
from pathlib import Path
|
|
from matplotlib import pyplot as plt
|
|
import itertools as it
|
|
|
|
try:
|
|
# noinspection PyUnboundLocalVariable
|
|
if __package__ is None:
|
|
DIR = Path(__file__).resolve().parent
|
|
sys.path.insert(0, str(DIR.parent))
|
|
__package__ = DIR.name
|
|
else:
|
|
DIR = None
|
|
except NameError:
|
|
DIR = None
|
|
pass
|
|
|
|
import simplejson
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
|
|
from environments import helpers as h
|
|
from environments.factory.factory_dirt import DirtProperties, DirtFactory
|
|
from environments.factory.combined_factories import DirtItemFactory
|
|
from environments.factory.factory_item import ItemProperties, ItemFactory
|
|
from environments.logging.envmonitor import EnvMonitor
|
|
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
|
|
import pickle
|
|
from plotting.compare_runs import compare_seed_runs, compare_model_runs
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
|
|
import multiprocessing as mp
|
|
|
|
"""
|
|
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
|
but never saw each other in training.
|
|
Those agents learned
|
|
|
|
|
|
We start with training a single policy on a single task (dirt cleanup / item pickup).
|
|
Then multiple agent equipped with the same policy are deployed in the same environment.
|
|
|
|
There are further distinctions to be made:
|
|
|
|
1. No Observation - ['no_obs']:
|
|
- Agent do not see each other but their consequences of their combined actions
|
|
- Agents can collide
|
|
|
|
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
|
|
- Agents see other entitys on a seperate slice
|
|
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
|
|
-- Depending ob the fill value, agents will react diffently
|
|
-> TODO: Test this!
|
|
|
|
3. Observation in level slice - ['in_lvl_obs']:
|
|
- This tells the agent to treat other agents as obstacle.
|
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
|
- We are out of distribution.
|
|
|
|
4. Obseration (similiar to camera read out) ['in_lvl_0.5', 'in_lvl_n']
|
|
- This tells the agent to treat other agents as obstacle, but "sees" them encoded as a different value.
|
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
|
- We are out of distribution.
|
|
"""
|
|
|
|
n_agents = 4
|
|
ood_monitor_file = f'e_1_{n_agents}_agents'
|
|
baseline_monitor_file = 'e_1_baseline'
|
|
|
|
|
|
def policy_model_kwargs():
|
|
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
|
|
|
|
|
|
def dqn_model_kwargs():
|
|
return dict(buffer_size=50000,
|
|
learning_starts=64,
|
|
batch_size=64,
|
|
target_update_interval=5000,
|
|
exploration_fraction=0.25,
|
|
exploration_final_eps=0.025
|
|
)
|
|
|
|
|
|
def encapsule_env_factory(env_fctry, env_kwrgs):
|
|
|
|
def _init():
|
|
with env_fctry(**env_kwrgs) as init_env:
|
|
return init_env
|
|
|
|
return _init
|
|
|
|
|
|
def load_model_run_baseline(seed_path, env_to_run):
|
|
# retrieve model class
|
|
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
|
|
# Load both agents
|
|
model = model_cls.load(seed_path / 'model.zip', device='cpu')
|
|
# Load old env kwargs
|
|
with next(seed_path.glob('*.json')).open('r') as f:
|
|
env_kwargs = simplejson.load(f)
|
|
env_kwargs.update(done_at_collision=True)
|
|
# Init Env
|
|
with env_to_run(**env_kwargs) as env_factory:
|
|
monitored_env_factory = EnvMonitor(env_factory)
|
|
|
|
# Evaluation Loop for i in range(n Episodes)
|
|
for episode in range(100):
|
|
env_state = monitored_env_factory.reset()
|
|
rew, done_bool = 0, False
|
|
while not done_bool:
|
|
action = model.predict(env_state, deterministic=True)[0]
|
|
env_state, step_r, done_bool, info_obj = monitored_env_factory.step(action)
|
|
rew += step_r
|
|
if done_bool:
|
|
break
|
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
|
monitored_env_factory.save_run(filepath=seed_path / f'{baseline_monitor_file}.pick')
|
|
|
|
|
|
def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
|
|
global model_cls
|
|
# retrieve model class
|
|
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
|
|
# Load both agents
|
|
models = [model_cls.load(seed_path / 'model.zip', device='cpu') for _ in range(n_agents)]
|
|
# Load old env kwargs
|
|
with next(seed_path.glob('*.json')).open('r') as f:
|
|
env_kwargs = simplejson.load(f)
|
|
env_kwargs.update(
|
|
n_agents=n_agents,
|
|
done_at_collision=True,
|
|
**additional_kwargs_dict.get('post_training_kwargs', {}))
|
|
# Init Env
|
|
with env_to_run(**env_kwargs) as env_factory:
|
|
monitored_factory_env = EnvMonitor(env_factory)
|
|
# Evaluation Loop for i in range(n Episodes)
|
|
for episode in range(50):
|
|
env_state = monitored_factory_env.reset()
|
|
rew, done_bool = 0, False
|
|
while not done_bool:
|
|
try:
|
|
actions = [model.predict(env_state[model_idx], deterministic=True)[0]
|
|
for model_idx, model in enumerate(models)]
|
|
except ValueError as e:
|
|
print(e)
|
|
print('Env_Kwargs are:\n')
|
|
print(env_kwargs)
|
|
print('Path is:\n')
|
|
print(seed_path)
|
|
exit()
|
|
env_state, step_r, done_bool, info_obj = monitored_factory_env.step(actions)
|
|
rew += step_r
|
|
if done_bool:
|
|
break
|
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
|
monitored_factory_env.save_run(filepath=seed_path / f'{ood_monitor_file}.pick')
|
|
# Eval monitor outputs are automatically stored by the monitor object
|
|
del models, env_kwargs, env_factory
|
|
import gc
|
|
gc.collect()
|
|
|
|
|
|
def start_mp_study_run(envs_map, policies_path):
|
|
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{ood_monitor_file}.pick').exists())
|
|
if paths:
|
|
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
|
|
print("Starting MP with: ", pool._processes, " Processes")
|
|
_ = pool.starmap(load_model_run_study,
|
|
it.product(paths,
|
|
(envs_map[policies_path.parent.name][0],),
|
|
(observation_modes[policies_path.parent.parent.name],))
|
|
)
|
|
|
|
|
|
def start_mp_baseline_run(envs_map, policies_path):
|
|
paths = list(y for y in policies_path.iterdir() if y.is_dir() and
|
|
not (y / f'{baseline_monitor_file}.pick').exists())
|
|
if paths:
|
|
with mp.get_context("spawn").Pool(mp.cpu_count()) as pool:
|
|
print("Starting MP with: ", pool._processes, " Processes")
|
|
_ = pool.starmap(load_model_run_baseline,
|
|
it.product(paths,
|
|
(envs_map[policies_path.parent.name][0],))
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# What to do:
|
|
train = True
|
|
baseline_run = True
|
|
ood_run = True
|
|
plotting = True
|
|
|
|
train_steps = 1e6
|
|
n_seeds = 3
|
|
frames_to_stack = 3
|
|
|
|
# Define a global studi save path
|
|
start_time = 'new_reward' # int(time.time())
|
|
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
|
|
|
# Define Global Env Parameters
|
|
# Define properties object parameters
|
|
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
|
|
omit_agent_self=True,
|
|
additional_agent_placeholder=None,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2
|
|
)
|
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
|
allow_square_movement=True,
|
|
allow_no_op=False)
|
|
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
|
|
clean_amount=0.34,
|
|
max_spawn_amount=0.1, max_global_amount=20,
|
|
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
|
|
dirt_smear_amount=0.0)
|
|
item_props = ItemProperties(n_items=10,
|
|
spawn_frequency=30, n_drop_off_locations=2,
|
|
max_agent_inventory_capacity=15)
|
|
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
|
|
level_name='rooms', doors_have_area=True,
|
|
verbose=False,
|
|
mv_prop=move_props,
|
|
obs_prop=obs_props,
|
|
done_at_collision=True
|
|
)
|
|
|
|
# Bundle both environments with global kwargs and parameters
|
|
env_map = {}
|
|
env_map.update({'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
|
|
**factory_kwargs.copy()))})
|
|
if False:
|
|
env_map.update({'item': (ItemFactory, dict(item_prop=item_props,
|
|
**factory_kwargs.copy()))})
|
|
env_map.update({'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props, item_prop=item_props,
|
|
**factory_kwargs.copy()))})
|
|
env_names = list(env_map.keys())
|
|
|
|
# Define parameter versions according with #1,2[1,0,N],3
|
|
observation_modes = {}
|
|
if False:
|
|
observation_modes.update({
|
|
'seperate_1': dict(
|
|
post_training_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.COMBINED,
|
|
additional_agent_placeholder=None,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
),
|
|
additional_env_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.NOT,
|
|
additional_agent_placeholder=1,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
)
|
|
)})
|
|
observation_modes.update({
|
|
'seperate_0': dict(
|
|
post_training_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.COMBINED,
|
|
additional_agent_placeholder=None,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
),
|
|
additional_env_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.NOT,
|
|
additional_agent_placeholder=0,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
)
|
|
)})
|
|
observation_modes.update({
|
|
'seperate_N': dict(
|
|
post_training_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.COMBINED,
|
|
additional_agent_placeholder=None,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
),
|
|
additional_env_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.NOT,
|
|
additional_agent_placeholder='N',
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
)
|
|
)})
|
|
observation_modes.update({
|
|
'in_lvl_obs': dict(
|
|
post_training_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.LEVEL,
|
|
omit_agent_self=True,
|
|
additional_agent_placeholder=None,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
)
|
|
)})
|
|
observation_modes.update({
|
|
# No further adjustment needed
|
|
'no_obs': dict(
|
|
post_training_kwargs=
|
|
dict(obs_prop=ObservationProperties(
|
|
render_agents=AgentRenderOptions.NOT,
|
|
additional_agent_placeholder=None,
|
|
omit_agent_self=True,
|
|
frames_to_stack=frames_to_stack,
|
|
pomdp_r=2)
|
|
)
|
|
)
|
|
})
|
|
|
|
# Train starts here ############################################################
|
|
# Build Major Loop parameters, parameter versions, Env Classes and models
|
|
if train:
|
|
for obs_mode in observation_modes.keys():
|
|
for env_name in env_names:
|
|
for model_cls in [h.MODEL_MAP['A2C']]:
|
|
# Create an identifier, which is unique for every combination and easy to read in filesystem
|
|
identifier = f'{model_cls.__name__}_{start_time}'
|
|
# Train each combination per seed
|
|
combination_path = study_root_path / obs_mode / env_name / identifier
|
|
env_class, env_kwargs = env_map[env_name]
|
|
env_kwargs = env_kwargs.copy()
|
|
# Retrieve and set the observation mode specific env parameters
|
|
additional_kwargs = observation_modes.get(obs_mode, {}).get("additional_env_kwargs", {})
|
|
env_kwargs.update(additional_kwargs)
|
|
for seed in range(n_seeds):
|
|
env_kwargs.update(env_seed=seed)
|
|
# Output folder
|
|
seed_path = combination_path / f'{str(seed)}_{identifier}'
|
|
if (seed_path / 'monitor.pick').exists():
|
|
continue
|
|
seed_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Env Init & Model kwargs definition
|
|
if model_cls.__name__ in ["PPO", "A2C"]:
|
|
# env_factory = env_class(**env_kwargs)
|
|
|
|
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
|
|
for _ in range(6)], start_method="spawn")
|
|
model_kwargs = policy_model_kwargs()
|
|
|
|
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
|
with env_class(**env_kwargs) as env_factory:
|
|
model_kwargs = dqn_model_kwargs()
|
|
|
|
else:
|
|
raise NameError(f'The model "{model_cls.__name__}" has the wrong name.')
|
|
|
|
param_path = seed_path / f'env_params.json'
|
|
try:
|
|
env_factory.env_method('save_params', param_path)
|
|
except AttributeError:
|
|
env_factory.save_params(param_path)
|
|
|
|
# EnvMonitor Init
|
|
callbacks = [EnvMonitor(env_factory)]
|
|
|
|
# Model Init
|
|
model = model_cls("MlpPolicy", env_factory,
|
|
verbose=1, seed=seed, device='cpu',
|
|
**model_kwargs)
|
|
|
|
# Model train
|
|
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
|
|
|
# Model save
|
|
save_path = seed_path / f'model.zip'
|
|
model.save(save_path)
|
|
|
|
# Monitor Save
|
|
callbacks[0].save_run(seed_path / 'monitor.pick')
|
|
|
|
# Better be save then sorry: Clean up!
|
|
del env_factory, model
|
|
import gc
|
|
gc.collect()
|
|
|
|
# Compare performance runs, for each seed within a model
|
|
try:
|
|
compare_seed_runs(combination_path, use_tex=False)
|
|
except ValueError:
|
|
pass
|
|
# Better be save then sorry: Clean up!
|
|
try:
|
|
del env_kwargs
|
|
del model_kwargs
|
|
import gc
|
|
gc.collect()
|
|
except NameError:
|
|
pass
|
|
|
|
# Compare performance runs, for each model
|
|
# FIXME: Check THIS!!!!
|
|
try:
|
|
compare_model_runs(study_root_path / obs_mode / env_name, f'{start_time}', 'step_reward',
|
|
use_tex=False)
|
|
except ValueError:
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
# Train ends here ############################################################
|
|
|
|
# Evaluation starts here #####################################################
|
|
# First Iterate over every model and monitor "as trained"
|
|
if baseline_run:
|
|
print('Start Baseline Tracking')
|
|
for obs_mode in observation_modes:
|
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
|
# For trained policy in study_root_path / identifier
|
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
|
# Iteration
|
|
start_mp_baseline_run(env_map, policy_path)
|
|
|
|
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
|
# load_model_run_baseline(policy_path)
|
|
print('Baseline Tracking done')
|
|
|
|
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
|
if ood_run:
|
|
print('Start OOD Tracking')
|
|
for obs_mode in observation_modes:
|
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
|
# For trained policy in study_root_path / identifier
|
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
|
# FIXME: Pick random seed or iterate over available seeds
|
|
# First seed path version
|
|
# policy_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
|
# Iteration
|
|
start_mp_study_run(env_map, policy_path)
|
|
#for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
|
# load_model_run_study(policy_path, env_map[env_path.name][0], observation_modes[obs_mode])
|
|
print('OOD Tracking Done')
|
|
|
|
# Plotting
|
|
if plotting:
|
|
# TODO: Plotting
|
|
print('Start Plotting')
|
|
df_list = list()
|
|
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
|
|
|
|
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
|
|
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
|
|
# Gather per seed results in this list
|
|
|
|
for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()):
|
|
for monitor_file in [f'{baseline_monitor_file}.pick', f'{ood_monitor_file}.pick']:
|
|
|
|
with (seed_folder / monitor_file).open('rb') as f:
|
|
monitor_df = pickle.load(f)
|
|
|
|
monitor_df = monitor_df.fillna(0)
|
|
monitor_df['seed'] = int(seed_folder.name.split('_')[0])
|
|
monitor_df['monitor'] = monitor_file.split('.')[0]
|
|
monitor_df['monitor'] = monitor_df['monitor'].astype(str)
|
|
monitor_df['env'] = env_folder.name
|
|
|
|
monitor_df['obs_mode'] = observation_folder.name
|
|
monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str)
|
|
monitor_df['model'] = model_folder.name.split('_')[0]
|
|
|
|
df_list.append(monitor_df)
|
|
|
|
id_cols = ['monitor', 'env', 'obs_mode', 'model']
|
|
|
|
df = pd.concat(df_list, ignore_index=True)
|
|
df = df.fillna(0)
|
|
for env_name in env_names:
|
|
for id_col in id_cols:
|
|
df[id_col] = df[id_col].astype(str)
|
|
|
|
if True:
|
|
# df['fail_sum'] = df.loc[:, df.columns.str.contains("failed")].sum(1)
|
|
df['pick_up'] = df.loc[:, df.columns.str.contains("]_item_pickup")].sum(1)
|
|
df['drop_off'] = df.loc[:, df.columns.str.contains("]_item_dropoff")].sum(1)
|
|
df['failed_item_action'] = df.loc[:, df.columns.str.contains("]_failed_item_action")].sum(1)
|
|
df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1)
|
|
df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1)
|
|
df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2
|
|
# df['`collis`ions'] = df['coll_lvl'] + df['coll_agent']
|
|
|
|
value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup',
|
|
'coll_lvl', 'coll_agent', 'dirt_cleaned']
|
|
|
|
df_grouped = df.groupby(id_cols + ['seed']
|
|
# 'sum' if "agent" in key else 'mean'
|
|
).agg({key: 'sum' for key in df.columns
|
|
if key not in (id_cols + ['seed'])})
|
|
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
|
|
value_vars=value_vars, # 'step_reward',
|
|
var_name="Measurement",
|
|
value_name="Score")
|
|
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
|
|
|
|
# Plotting
|
|
fig, ax = plt.subplots(figsize=(11.7, 8.27))
|
|
|
|
c = sns.catplot(data=df_melted[df_melted['env'] == env_name],
|
|
x='Measurement', hue='monitor', row='model', col='obs_mode', y='Score',
|
|
sharey=True, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
|
|
showfliers=False)
|
|
c.set_xticklabels(rotation=65, horizontalalignment='right')
|
|
# c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
|
|
c.fig.suptitle(f"Cat plot for {env_name}")
|
|
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
|
|
plt.tight_layout()
|
|
plt.savefig(study_root_path / f'results_{n_agents}_agents_{env_name}.png')
|
|
pass
|