from collections import defaultdict from pathlib import Path from typing import Union import numpy as np import pandas as pd import simplejson from stable_baselines3.common.callbacks import BaseCallback from environments.factory.base.base_factory import REC_TAC class EnvRecorder(BaseCallback): def __init__(self, env, entities='all'): super(EnvRecorder, self).__init__() self.unwrapped = env self._recorder_dict = defaultdict(list) self._recorder_out_list = list() if isinstance(entities, str): if entities.lower() == 'all': self._entities = None else: self._entities = [entities] else: self._entities = entities def __getattr__(self, item): return getattr(self.unwrapped, item) def reset(self): self.unwrapped.start_recording() return self.unwrapped.reset() def _on_training_start(self) -> None: self.unwrapped._record_episodes = True pass def _read_info(self, env_idx, info: dict): if info_dict := {key.replace(REC_TAC, ''): val for key, val in info.items() if key.startswith(f'{REC_TAC}')}: if self._entities: info_dict = {k: v for k, v in info_dict.items() if k in self._entities} info_dict.update(episode=(self.num_timesteps + env_idx)) self._recorder_dict[env_idx].append(info_dict) else: pass return def _read_done(self, env_idx, done): if done: self._recorder_out_list.append({'steps': self._recorder_dict[env_idx], 'episode': len(self._recorder_out_list)}) self._recorder_dict[env_idx] = list() else: pass def step(self, actions): step_result = self.unwrapped.step(actions) # 0, 1, 2 , 3 = idx # _, _, done_bool, info_obj = step_result self._read_info(0, step_result[3]) self._read_done(0, step_result[2]) return step_result def save_records(self, filepath: Union[Path, str], save_occupation_map=False, save_trajectory_map=False): filepath = Path(filepath) filepath.parent.mkdir(exist_ok=True, parents=True) # cls.out_file.unlink(missing_ok=True) with filepath.open('w') as f: out_dict = {'episodes': self._recorder_out_list, 'header': self.unwrapped.params} try: simplejson.dump(out_dict, f, indent=4) except TypeError: print('Shit') if save_occupation_map: a = np.zeros((15, 15)) for episode in out_dict['episodes']: df = pd.DataFrame([y for x in episode['steps'] for y in x['Agents']]) b = list(df[['x', 'y']].to_records(index=False)) np.add.at(a, tuple(zip(*b)), 1) # a = np.rot90(a) import seaborn as sns from matplotlib import pyplot as plt hm = sns.heatmap(data=a) hm.set_title('Very Nice Heatmap') plt.show() if save_trajectory_map: raise NotImplementedError('This has not yet been implemented.') def _on_step(self) -> bool: for env_idx, info in enumerate(self.locals.get('infos', [])): self._read_info(env_idx, info) dones = list(enumerate(self.locals.get('dones', []))) dones.extend(list(enumerate(self.locals.get('done', [])))) for env_idx, done in dones: self._read_done(env_idx, done) return True def _on_training_end(self) -> None: pass