import numpy as np from attr import dataclass from environments.factory.base_factory import BaseFactory from collections import namedtuple from typing import Iterable from environments import helpers as h DIRT_INDEX = -1 @dataclass class DirtProperties: clean_amount = 0.25 max_spawn_ratio = 0.1 gain_amount = 0.1 class GettingDirty(BaseFactory): @property def _clean_up_action(self): return self.movement_actions + 1 - 1 def __init__(self, *args, dirt_properties: DirtProperties, **kwargs): self._dirt_properties = dirt_properties super(GettingDirty, self).__init__(*args, **kwargs) self.slice_strings.update({self.state.shape[0]-1: 'dirt'}) def spawn_dirt(self) -> None: free_for_dirt = self.free_cells # randomly distribute dirt across the grid n_dirt_tiles = int(random.uniform(0, self._dirt_properties.max_spawn_ratio) * len(free_for_dirt)) for x, y in free_for_dirt[:n_dirt_tiles]: self.state[DIRT_INDEX, x, y] += self._dirt_properties.gain_amount def clean_up(self, pos: (int, int)) -> ((int, int), bool): new_dirt_amount = self.state[DIRT_INDEX][pos] - self._dirt_properties.clean_amount cleanup_was_sucessfull: bool if self.state[DIRT_INDEX][pos] == h.IS_FREE_CELL: cleanup_was_sucessfull = False return pos, cleanup_was_sucessfull else: cleanup_was_sucessfull = True self.state[DIRT_INDEX][pos] = max(new_dirt_amount, h.IS_FREE_CELL) return pos, cleanup_was_sucessfull def additional_actions(self, agent_i, action) -> ((int, int), bool): if action != self._is_moving_action(action): if action == self._clean_up_action: agent_i_pos = self.agent_i_position(agent_i) _, valid = self.clean_up(agent_i_pos) if valid: print(f'Agent {agent_i} did just clean up some dirt at {agent_i_pos}.') else: print(f'Agent {agent_i} just tried to clean up some dirt at {agent_i_pos}, but was unsucsessfull.') return agent_i_pos, valid else: raise RuntimeError('This should not happen!!!') def reset(self) -> None: # ToDo: When self.reset returns the new states and stuff, use it here! super().reset() # state, agents, ... = dirt_slice = np.zeros((1, *self.state.shape[1:])) self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice self.spawn_dirt() def calculate_reward(self, collisions_vecs: np.ndarray, actions: Iterable[int]) -> (int, dict): for agent_i, cols in enumerate(collisions_vecs): cols = np.argwhere(cols != 0).flatten() print(f't = {self.steps}\tAgent {agent_i} has collisions with ' f'{[self.slice_strings[entity] for entity in cols if entity != self.state.shape[0]]}') return 0, {} if __name__ == '__main__': import random dirt_props = DirtProperties() factory = GettingDirty(n_agents=1, dirt_properties=dirt_props) random_actions = [random.randint(0, 8) for _ in range(200)] for action in random_actions: state, r, done, _ = factory.step(action)