import numpy as np from environments.factory.base_factory import BaseFactory from collections import namedtuple DirtProperties = namedtuple('DirtProperties', ['clean_amount', 'max_spawn_ratio', 'gain_amount']) class GettingDirty(BaseFactory): _dirt_indx = -1 def __init__(self, *args, dirt_properties, **kwargs): super(GettingDirty, self).__init__(*args, **kwargs) self._dirt_properties = dirt_properties self.slice_strings.update({self.state.shape[0]-1: 'dirt'}) def spawn_dirt(self): free_for_dirt = self.free_cells for x, y in free_for_dirt[:self._max_dirt_spawn_ratio * free_for_dirt.]: # randomly distribute dirt across the grid self.state[self._dirt_indx, x, y] += 0.1 def reset(self): # ToDo: When self.reset returns the new states and stuff, use it here! super().reset() # state, agents, ... = dirt_slice = np.zeros((1, *self.state.shape[1:])) self.state = np.concatenate((self.state, dirt_slice)) # dirt is now the last slice self.spawn_dirt() def step_core(self, collisions_vecs, actions, r): for agent_i, cols in enumerate(collisions_vecs): cols = np.argwhere(cols != 0).flatten() print(f't = {self.steps}\tAgent {agent_i} has collisions with ' f'{[self.slice_strings[entity] for entity in cols]}') return 0, {} if __name__ == '__main__': import random factory = GettingDirty(n_agents=1, max_dirt=8) random_actions = [random.randint(0, 8) for _ in range(200)] for action in random_actions: state, r, done, _ = factory.step(action)