from collections import defaultdict from os import PathLike from pathlib import Path from typing import Union import numpy as np import pandas as pd import simplejson from stable_baselines3.common.callbacks import BaseCallback from environments.factory.base.base_factory import REC_TAC class EnvRecorder(BaseCallback): def __init__(self, env, entities: str = 'all', filepath: Union[str, PathLike] = None, freq: int = 0): super(EnvRecorder, self).__init__() self.filepath = filepath self.unwrapped = env self.freq = freq self._recorder_dict = defaultdict(list) self._recorder_out_list = list() self._episode_counter = 1 if isinstance(entities, str): if entities.lower() == 'all': self._entities = None else: self._entities = [entities] else: self._entities = entities def __getattr__(self, item): return getattr(self.unwrapped, item) def reset(self): self._on_training_start() return self.unwrapped.reset() def _on_training_start(self) -> None: assert self.start_recording() def _read_info(self, env_idx, info: dict): if info_dict := {key.replace(REC_TAC, ''): val for key, val in info.items() if key.startswith(f'{REC_TAC}')}: if self._entities: info_dict = {k: v for k, v in info_dict.items() if k in self._entities} self._recorder_dict[env_idx].append(info_dict) else: pass return True def _read_done(self, env_idx, done): if done: self._recorder_out_list.append({'steps': self._recorder_dict[env_idx], 'episode': self._episode_counter}) self._recorder_dict[env_idx] = list() else: pass def step(self, actions): step_result = self.unwrapped.step(actions) self._on_step() return step_result def finalize(self): self._on_training_end() return True def save_records(self, filepath: Union[Path, str, None] = None, save_occupation_map=False, save_trajectory_map=False): filepath = Path(filepath or self.filepath) filepath.parent.mkdir(exist_ok=True, parents=True) # cls.out_file.unlink(missing_ok=True) with filepath.open('w') as f: out_dict = {'n_episodes': self._episode_counter, 'header': self.unwrapped.params, 'episodes': self._recorder_out_list } try: simplejson.dump(out_dict, f, indent=4) except TypeError: print('Shit') if save_occupation_map: a = np.zeros((15, 15)) # noinspection PyTypeChecker for episode in out_dict['episodes']: df = pd.DataFrame([y for x in episode['steps'] for y in x['Agents']]) b = list(df[['x', 'y']].to_records(index=False)) np.add.at(a, tuple(zip(*b)), 1) # a = np.rot90(a) import seaborn as sns from matplotlib import pyplot as plt hm = sns.heatmap(data=a) hm.set_title('Very Nice Heatmap') plt.show() if save_trajectory_map: raise NotImplementedError('This has not yet been implemented.') def _on_step(self) -> bool: do_record = self.freq == -1 or self._episode_counter % self.freq == 0 for env_idx, info in enumerate(self.locals.get('infos', [])): if do_record: self._read_info(env_idx, info) dones = list(enumerate(self.locals.get('dones', []))) dones.extend(list(enumerate(self.locals.get('done', [])))) for env_idx, done in dones: if do_record: self._read_done(env_idx, done) if done: self._episode_counter += 1 return True def _on_training_end(self) -> None: for env_idx in range(len(self._recorder_dict)): if self._recorder_dict[env_idx]: self._recorder_out_list.append({'steps': self._recorder_dict[env_idx], 'episode': self._episode_counter}) pass