import pickle from collections import defaultdict from os import PathLike from pathlib import Path from typing import List, Dict, Union from stable_baselines3.common.callbacks import BaseCallback from environments.helpers import IGNORED_DF_COLUMNS import pandas as pd from plotting.compare_runs import plot_single_run class EnvMonitor(BaseCallback): ext = 'png' def __init__(self, env, filepath: Union[str, PathLike] = None): super(EnvMonitor, self).__init__() self.unwrapped = env self._filepath = filepath self._monitor_df = pd.DataFrame() self._monitor_dicts = defaultdict(dict) def __getattr__(self, item): return getattr(self.unwrapped, item) def step(self, action): obs, reward, done, info = self.unwrapped.step(action) self._read_info(0, info) self._read_done(0, done) return obs, reward, done, info def reset(self): return self.unwrapped.reset() def _on_training_start(self) -> None: pass def _on_training_end(self) -> None: pass def _on_step(self, alt_infos: List[Dict] = None, alt_dones: List[bool] = None) -> bool: for env_idx, info in enumerate(self.locals.get('infos', [])): self._read_info(env_idx, info) for env_idx, done in list( enumerate(self.locals.get('dones', []))) + list(enumerate(self.locals.get('done', []))): self._read_done(env_idx, done) return True def _read_info(self, env_idx, info: dict): self._monitor_dicts[env_idx][len(self._monitor_dicts[env_idx])] = { key: val for key, val in info.items() if key not in ['terminal_observation', 'episode'] and not key.startswith('rec_')} return def _read_done(self, env_idx, done): if done: env_monitor_df = pd.DataFrame.from_dict(self._monitor_dicts[env_idx], orient='index') self._monitor_dicts[env_idx] = dict() columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS] env_monitor_df = env_monitor_df.aggregate( {col: 'mean' if col.endswith('ount') else 'sum' for col in columns} ) env_monitor_df['episode'] = len(self._monitor_df) self._monitor_df = self._monitor_df.append([env_monitor_df]) else: pass return def save_run(self, filepath: Union[Path, str, None] = None, auto_plotting_keys=None): filepath = Path(filepath or self._filepath) filepath.parent.mkdir(exist_ok=True, parents=True) with filepath.open('wb') as f: pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL) if auto_plotting_keys: plot_single_run(filepath, column_keys=auto_plotting_keys)