import itertools from collections import defaultdict from enum import Enum, auto from typing import Tuple, Union import networkx as nx import numpy as np from pathlib import Path from stable_baselines3 import PPO, DQN, A2C MODEL_MAP = dict(PPO=PPO, DQN=DQN, A2C=A2C) LEVELS_DIR = 'levels' STEPS_START = 1 TO_BE_AVERAGED = ['dirt_amount', 'dirty_tiles'] IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index', 'dirt_amount', 'dirty_tile_count', 'terminal_observation', 'episode'] # Constants class Constants(Enum): WALL = '#' WALLS = 'Walls' FLOOR = 'Floor' DOOR = 'D' DANGER_ZONE = 'x' LEVEL = 'Level' AGENT = 'Agent' AGENT_PLACEHOLDER = 'AGENT_PLACEHOLDER' FREE_CELL = 0 OCCUPIED_CELL = 1 SHADOWED_CELL = -1 NO_POS = (-9999, -9999) DOORS = 'Doors' CLOSED_DOOR = 'closed' OPEN_DOOR = 'open' ACTION = 'action' COLLISIONS = 'collision' VALID = 'valid' NOT_VALID = 'not_valid' # Dirt Env DIRT = 'Dirt' # Item Env ITEM = 'Item' INVENTORY = 'Inventory' DROP_OFF = 'Drop_Off' # Battery Env CHARGE_POD = 'Charge_Pod' BATTERIES = 'BATTERIES' # Destination Env DESTINATION = 'Destination' REACHEDDESTINATION = 'ReachedDestination' def __bool__(self): if 'not_' in self.value: return False else: return bool(self.value) class MovingAction(Enum): NORTH = 'north' EAST = 'east' SOUTH = 'south' WEST = 'west' NORTHEAST = 'north_east' SOUTHEAST = 'south_east' SOUTHWEST = 'south_west' NORTHWEST = 'north_west' @classmethod def is_member(cls, other): return any([other == direction for direction in cls]) @classmethod def square(cls): return [cls.NORTH, cls.EAST, cls.SOUTH, cls.WEST] @classmethod def diagonal(cls): return [cls.NORTHEAST, cls.SOUTHEAST, cls.SOUTHWEST, cls.NORTHWEST] class EnvActions(Enum): NOOP = 'no_op' USE_DOOR = 'use_door' CLEAN_UP = 'clean_up' ITEM_ACTION = 'item_action' CHARGE = 'charge' WAIT_ON_DEST = 'wait' m = MovingAction c = Constants ACTIONMAP = defaultdict(lambda: (0, 0), {m.NORTH: (-1, 0), m.NORTHEAST: (-1, +1), m.EAST: (0, 1), m.SOUTHEAST: (1, 1), m.SOUTH: (1, 0), m.SOUTHWEST: (+1, -1), m.WEST: (0, -1), m.NORTHWEST: (-1, -1) } ) # Utility functions def parse_level(path): with path.open('r') as lvl: level = list(map(lambda x: list(x.strip()), lvl.readlines())) if len(set([len(line) for line in level])) > 1: raise AssertionError('Every row of the level string must be of equal length.') return level def one_hot_level(level, wall_char: Union[c, str] = c.WALL): grid = np.array(level) binary_grid = np.zeros(grid.shape, dtype=np.int8) if wall_char in c: binary_grid[grid == wall_char.value] = c.OCCUPIED_CELL.value else: binary_grid[grid == wall_char] = c.OCCUPIED_CELL.value return binary_grid def check_position(slice_to_check_against: np.ndarray, position_to_check: Tuple[int, int]): x_pos, y_pos = position_to_check # Check if agent colides with grid boundrys valid = not ( x_pos < 0 or y_pos < 0 or x_pos >= slice_to_check_against.shape[0] or y_pos >= slice_to_check_against.shape[0] ) # Check for collision with level walls valid = valid and not slice_to_check_against[x_pos, y_pos] return c.VALID if valid else c.NOT_VALID def asset_str(agent): # What does this abonimation do? # if any([x is None for x in [self._slices[j] for j in agent.collisions]]): # print('error') col_names = [x.name for x in agent.temp_collisions] if any(c.AGENT.value in name for name in col_names): return 'agent_collision', 'blank' elif not agent.temp_valid or c.LEVEL.name in col_names or c.AGENT.name in col_names: return c.AGENT.value, 'invalid' elif agent.temp_valid and not MovingAction.is_member(agent.temp_action): return c.AGENT.value, 'valid' elif agent.temp_valid and MovingAction.is_member(agent.temp_action): return c.AGENT.value, 'move' else: return c.AGENT.value, 'idle' def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, allow_manhattan_connections=True): assert allow_euclidean_connections or allow_manhattan_connections if hasattr(coordiniates_or_tiles, 'positions'): coordiniates_or_tiles = coordiniates_or_tiles.positions possible_connections = itertools.combinations(coordiniates_or_tiles, 2) graph = nx.Graph() for a, b in possible_connections: diff = abs(np.subtract(a, b)) if not max(diff) > 1: if allow_manhattan_connections and allow_euclidean_connections: graph.add_edge(a, b) elif not allow_manhattan_connections and allow_euclidean_connections and all(diff): graph.add_edge(a, b) elif allow_manhattan_connections and not allow_euclidean_connections and not all(diff) and any(diff): graph.add_edge(a, b) return graph if __name__ == '__main__': parsed_level = parse_level(Path(__file__).parent / 'factory' / 'levels' / 'simple.txt') y = one_hot_level(parsed_level) print(np.argwhere(y == 0))