import pandas as pd from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC from pathlib import Path from algorithms.utils import load_yaml_file from tqdm import trange study = 'example_config#0' #study_root = Path(__file__).parent / study study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl/') #['L2NoAh_gru', 'L2NoCh_gru', 'nomix_gru']: render = True eval_eps = 3 for run in range(0, 5): for name in ['example_config']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']: cfg = load_yaml_file(study_root / study / 'config.yaml') #p_root = Path(study_root / study / f'{name}#{run}') dfs = [] for i in trange(500): path = study_root / study / f'checkpoint_{161}' print(path) snac = LoopSEAC(cfg) snac.load_state_dict(path) snac.eval() df = snac.eval_loop(render=render, n_episodes=eval_eps) df['checkpoint'] = i dfs.append(df) results = pd.concat(dfs) results['run'] = run results.to_csv(p_root / 'results.csv', index=False) #sns.lineplot(data=results, x='checkpoint', y='reward', hue='agent', palette='husl') #plt.savefig(f'{experiment_name}.png')