import sys from pathlib import Path from matplotlib import pyplot as plt import itertools as it try: # noinspection PyUnboundLocalVariable if __package__ is None: DIR = Path(__file__).resolve().parent sys.path.insert(0, str(DIR.parent)) __package__ = DIR.name else: DIR = None except NameError: DIR = None pass import simplejson from stable_baselines3.common.vec_env import SubprocVecEnv from environments import helpers as h from environments.factory.factory_dirt import DirtFactory from environments.factory.dirt_util import DirtProperties from environments.factory.combined_factories import DirtItemFactory from environments.factory.factory_item import ItemFactory from environments.factory.additional.item.item_util import ItemProperties from environments.logging.envmonitor import EnvMonitor from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions import pickle from plotting.compare_runs import compare_seed_runs, compare_model_runs import pandas as pd import seaborn as sns import multiprocessing as mp """ In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task, but never saw each other in training. Those agents learned We start with training a single policy on a single task (dirt cleanup / item pickup). Then multiple agent equipped with the same policy are deployed in the same environment. There are further distinctions to be made: 1. No Observation - ['no_obs']: - Agent do not see each other but their consequences of their combined actions - Agents can collide 2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]: - Agents see other entitys on a seperate slice - This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$ -- Depending ob the fill value, agents will react diffently -> TODO: Test this! 3. Observation in level slice - ['in_lvl_obs']: - This tells the agent to treat other agents as obstacle. - However, the state space is altered since moving obstacles are not part the original agent observation. - We are out of distribution. 4. Obseration (similiar to camera read out) ['in_lvl_0.5', 'in_lvl_n'] - This tells the agent to treat other agents as obstacle, but "sees" them encoded as a different value. - However, the state space is altered since moving obstacles are not part the original agent observation. - We are out of distribution. """ n_agents = 4 ood_monitor_file = f'e_1_{n_agents}_agents' baseline_monitor_file = 'e_1_baseline' def policy_model_kwargs(): return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True) def dqn_model_kwargs(): return dict(buffer_size=50000, learning_starts=64, batch_size=64, target_update_interval=5000, exploration_fraction=0.25, exploration_final_eps=0.025 ) def encapsule_env_factory(env_fctry, env_kwrgs): def _init(): with env_fctry(**env_kwrgs) as init_env: return init_env return _init def load_model_run_baseline(seed_path, env_to_run): # retrieve model class model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name) # Load both agents model = model_cls.load(seed_path / 'model.zip', device='cpu') # Load old env kwargs with next(seed_path.glob('*.json')).open('r') as f: env_kwargs = simplejson.load(f) env_kwargs.update(done_at_collision=True) # Init Env with env_to_run(**env_kwargs) as env_factory: monitored_env_factory = EnvMonitor(env_factory) # Evaluation Loop for i in range(n Episodes) for episode in range(100): env_state = monitored_env_factory.reset() rew, done_bool = 0, False while not done_bool: action = model.predict(env_state, deterministic=True)[0] env_state, step_r, done_bool, info_obj = monitored_env_factory.step(action) rew += step_r if done_bool: break print(f'Factory run {episode} done, reward is:\n {rew}') monitored_env_factory.save_run(filepath=seed_path / f'{baseline_monitor_file}.pick') def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict): global model_cls # retrieve model class model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name) # Load both agents models = [model_cls.load(seed_path / 'model.zip', device='cpu') for _ in range(n_agents)] # Load old env kwargs with next(seed_path.glob('*.json')).open('r') as f: env_kwargs = simplejson.load(f) env_kwargs.update( n_agents=n_agents, done_at_collision=True, **additional_kwargs_dict.get('post_training_kwargs', {})) # Init Env with env_to_run(**env_kwargs) as env_factory: monitored_factory_env = EnvMonitor(env_factory) # Evaluation Loop for i in range(n Episodes) for episode in range(50): env_state = monitored_factory_env.reset() rew, done_bool = 0, False while not done_bool: try: actions = [model.predict(env_state[model_idx], deterministic=True)[0] for model_idx, model in enumerate(models)] except ValueError as e: print(e) print('Env_Kwargs are:\n') print(env_kwargs) print('Path is:\n') print(seed_path) exit() env_state, step_r, done_bool, info_obj = monitored_factory_env.step(actions) rew += step_r if done_bool: break print(f'Factory run {episode} done, reward is:\n {rew}') monitored_factory_env.save_run(filepath=seed_path / f'{ood_monitor_file}.pick') # Eval monitor outputs are automatically stored by the monitor object del models, env_kwargs, env_factory import gc gc.collect() def start_mp_study_run(envs_map, policies_path): paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{ood_monitor_file}.pick').exists()) if paths: with mp.get_context("spawn").Pool(mp.cpu_count()) as pool: print("Starting MP with: ", pool._processes, " Processes") _ = pool.starmap(load_model_run_study, it.product(paths, (envs_map[policies_path.parent.name][0],), (observation_modes[policies_path.parent.parent.name],)) ) def start_mp_baseline_run(envs_map, policies_path): paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / f'{baseline_monitor_file}.pick').exists()) if paths: with mp.get_context("spawn").Pool(mp.cpu_count()) as pool: print("Starting MP with: ", pool._processes, " Processes") _ = pool.starmap(load_model_run_baseline, it.product(paths, (envs_map[policies_path.parent.name][0],)) ) if __name__ == '__main__': # What to do: train = True baseline_run = True ood_run = True plotting = True train_steps = 1e6 n_seeds = 3 frames_to_stack = 3 # Define a global studi save path start_time = 'new_reward' # int(time.time()) study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}' # Define Global Env Parameters # Define properties object parameters obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT, omit_agent_self=True, additional_agent_placeholder=None, frames_to_stack=frames_to_stack, pomdp_r=2 ) move_props = MovementProperties(allow_diagonal_movement=True, allow_square_movement=True, allow_no_op=False) dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1, clean_amount=0.34, max_spawn_amount=0.1, max_global_amount=20, max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05, dirt_smear_amount=0.0) item_props = ItemProperties(n_items=10, spawn_frequency=30, n_drop_off_locations=2, max_agent_inventory_capacity=15) factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True, level_name='rooms', doors_have_area=True, verbose=False, mv_prop=move_props, obs_prop=obs_props, done_at_collision=True ) # Bundle both environments with global kwargs and parameters env_map = {} env_map.update({'dirt': (DirtFactory, dict(dirt_prop=dirt_props, **factory_kwargs.copy()))}) if False: env_map.update({'item': (ItemFactory, dict(item_prop=item_props, **factory_kwargs.copy()))}) env_map.update({'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props, item_prop=item_props, **factory_kwargs.copy()))}) env_names = list(env_map.keys()) # Define parameter versions according with #1,2[1,0,N],3 observation_modes = {} if False: observation_modes.update({ 'seperate_1': dict( post_training_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.COMBINED, additional_agent_placeholder=None, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ), additional_env_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.NOT, additional_agent_placeholder=1, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ) )}) observation_modes.update({ 'seperate_0': dict( post_training_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.COMBINED, additional_agent_placeholder=None, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ), additional_env_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.NOT, additional_agent_placeholder=0, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ) )}) observation_modes.update({ 'seperate_N': dict( post_training_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.COMBINED, additional_agent_placeholder=None, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ), additional_env_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.NOT, additional_agent_placeholder='N', omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ) )}) observation_modes.update({ 'in_lvl_obs': dict( post_training_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.LEVEL, omit_agent_self=True, additional_agent_placeholder=None, frames_to_stack=frames_to_stack, pomdp_r=2) ) )}) observation_modes.update({ # No further adjustment needed 'no_obs': dict( post_training_kwargs= dict(obs_prop=ObservationProperties( render_agents=AgentRenderOptions.NOT, additional_agent_placeholder=None, omit_agent_self=True, frames_to_stack=frames_to_stack, pomdp_r=2) ) ) }) # Train starts here ############################################################ # Build Major Loop parameters, parameter versions, Env Classes and models if train: for obs_mode in observation_modes.keys(): for env_name in env_names: for model_cls in [h.MODEL_MAP['A2C']]: # Create an identifier, which is unique for every combination and easy to read in filesystem identifier = f'{model_cls.__name__}_{start_time}' # Train each combination per seed combination_path = study_root_path / obs_mode / env_name / identifier env_class, env_kwargs = env_map[env_name] env_kwargs = env_kwargs.copy() # Retrieve and set the observation mode specific env parameters additional_kwargs = observation_modes.get(obs_mode, {}).get("additional_env_kwargs", {}) env_kwargs.update(additional_kwargs) for seed in range(n_seeds): env_kwargs.update(env_seed=seed) # Output folder seed_path = combination_path / f'{str(seed)}_{identifier}' if (seed_path / 'monitor.pick').exists(): continue seed_path.mkdir(parents=True, exist_ok=True) # Env Init & Model kwargs definition if model_cls.__name__ in ["PPO", "A2C"]: # env_factory = env_class(**env_kwargs) env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs) for _ in range(6)], start_method="spawn") model_kwargs = policy_model_kwargs() elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]: with env_class(**env_kwargs) as env_factory: model_kwargs = dqn_model_kwargs() else: raise NameError(f'The model "{model_cls.__name__}" has the wrong name.') param_path = seed_path / f'env_params.json' try: env_factory.env_method('save_params', param_path) except AttributeError: env_factory.save_params(param_path) # EnvMonitor Init callbacks = [EnvMonitor(env_factory)] # Model Init model = model_cls("MlpPolicy", env_factory, verbose=1, seed=seed, device='cpu', **model_kwargs) # Model train model.learn(total_timesteps=int(train_steps), callback=callbacks) # Model save save_path = seed_path / f'model.zip' model.save(save_path) # Monitor Save callbacks[0].save_run(seed_path / 'monitor.pick') # Better be save then sorry: Clean up! del env_factory, model import gc gc.collect() # Compare performance runs, for each seed within a model try: compare_seed_runs(combination_path, use_tex=False) except ValueError: pass # Better be save then sorry: Clean up! try: del env_kwargs del model_kwargs import gc gc.collect() except NameError: pass # Compare performance runs, for each model # FIXME: Check THIS!!!! try: compare_model_runs(study_root_path / obs_mode / env_name, f'{start_time}', 'step_reward', use_tex=False) except ValueError: pass pass pass pass pass # Train ends here ############################################################ # Evaluation starts here ##################################################### # First Iterate over every model and monitor "as trained" if baseline_run: print('Start Baseline Tracking') for obs_mode in observation_modes: obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode) # For trained policy in study_root_path / identifier for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]: for policy_path in [x for x in env_path.iterdir() if x. is_dir()]: # Iteration start_mp_baseline_run(env_map, policy_path) # for policy_path in (y for y in policy_path.iterdir() if y.is_dir()): # load_model_run_baseline(policy_path) print('Baseline Tracking done') # Then iterate over every model and monitor "ood behavior" - "is it ood?" if ood_run: print('Start OOD Tracking') for obs_mode in observation_modes: obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode) # For trained policy in study_root_path / identifier for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]: for policy_path in [x for x in env_path.iterdir() if x. is_dir()]: # FIXME: Pick random seed or iterate over available seeds # First seed path version # policy_path = next((y for y in policy_path.iterdir() if y.is_dir())) # Iteration start_mp_study_run(env_map, policy_path) #for policy_path in (y for y in policy_path.iterdir() if y.is_dir()): # load_model_run_study(policy_path, env_map[env_path.name][0], observation_modes[obs_mode]) print('OOD Tracking Done') # Plotting if plotting: # TODO: Plotting print('Start Plotting') df_list = list() for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()): for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()): for model_folder in (x for x in env_folder.iterdir() if x.is_dir()): # Gather per seed results in this list for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()): for monitor_file in [f'{baseline_monitor_file}.pick', f'{ood_monitor_file}.pick']: with (seed_folder / monitor_file).open('rb') as f: monitor_df = pickle.load(f) monitor_df = monitor_df.fillna(0) monitor_df['seed'] = int(seed_folder.name.split('_')[0]) monitor_df['monitor'] = monitor_file.split('.')[0] monitor_df['monitor'] = monitor_df['monitor'].astype(str) monitor_df['env'] = env_folder.name monitor_df['obs_mode'] = observation_folder.name monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str) monitor_df['model'] = model_folder.name.split('_')[0] df_list.append(monitor_df) id_cols = ['monitor', 'env', 'obs_mode', 'model'] df = pd.concat(df_list, ignore_index=True) df = df.fillna(0) for env_name in env_names: for id_col in id_cols: df[id_col] = df[id_col].astype(str) if True: # df['fail_sum'] = df.loc[:, df.columns.str.contains("failed")].sum(1) df['pick_up'] = df.loc[:, df.columns.str.contains("]_item_pickup")].sum(1) df['drop_off'] = df.loc[:, df.columns.str.contains("]_item_dropoff")].sum(1) df['failed_item_action'] = df.loc[:, df.columns.str.contains("]_failed_item_action")].sum(1) df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1) df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1) df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2 # df['`collis`ions'] = df['coll_lvl'] + df['coll_agent'] value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup', 'coll_lvl', 'coll_agent', 'dirt_cleaned'] df_grouped = df.groupby(id_cols + ['seed'] # 'sum' if "agent" in key else 'mean' ).agg({key: 'sum' for key in df.columns if key not in (id_cols + ['seed'])}) df_melted = df_grouped.reset_index().melt(id_vars=id_cols, value_vars=value_vars, # 'step_reward', var_name="Measurement", value_name="Score") # df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"] # Plotting fig, ax = plt.subplots(figsize=(11.7, 8.27)) c = sns.catplot(data=df_melted[df_melted['env'] == env_name], x='Measurement', hue='monitor', row='model', col='obs_mode', y='Score', sharey=True, kind="box", height=4, aspect=.7, legend_out=False, legend=False, showfliers=False) c.set_xticklabels(rotation=65, horizontalalignment='right') # c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp c.fig.suptitle(f"Cat plot for {env_name}") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.tight_layout() plt.savefig(study_root_path / f'results_{n_agents}_agents_{env_name}.png') pass