17 Commits

Author SHA1 Message Date
4fe43a23b8 added simple example 2022-03-28 16:01:55 +02:00
a9a4274370 add more efficient (lazy) experience queue implementation based on tensor, adjusted marl algorithms 2022-02-03 13:14:48 +01:00
b09c461754 added first working MAPPO implementation 2022-01-28 11:07:25 +01:00
ffc47752a7 firs commit for our new MARL algorithms library, contains working implementations of IAC, SNAC and SEAC 2022-01-21 15:31:07 +01:00
3e19970a60 Door Parameter Assertion 2022-01-18 13:52:59 +01:00
51fb73ebb8 Fixed Parameter 2022-01-18 13:10:04 +01:00
a16d7e709e Door Area Indicators 2022-01-18 11:39:19 +01:00
3ce6302e8a Rewards can now be set as parameter 2022-01-17 11:21:07 +01:00
823aa075b9 Experiments look good 2022-01-15 12:37:58 +01:00
d29ccbbb71 Fixed Global Positions 2022-01-11 18:00:24 +01:00
2a2aafa988 Debugging 2022-01-11 16:27:34 +01:00
0e8a4af740 Debugging 2022-01-11 14:27:08 +01:00
b6c8cbd2e3 Debugging 2022-01-11 13:45:00 +01:00
3150757347 Debugging 2022-01-11 10:54:02 +01:00
435056f373 Rework for performance 2022-01-10 15:54:22 +01:00
78bf19f7f4 Item and Dirt Factory Working again 2021-12-23 13:19:31 +01:00
b43f595207 Rework of Observations and Entity Differentiation, lazy obs build by notification 2021-12-22 10:48:36 +01:00
46 changed files with 2988 additions and 2015 deletions

1
.gitignore vendored
View File

@ -702,3 +702,4 @@ $RECYCLE.BIN/
# End of https://www.toptal.com/developers/gitignore/api/linux,unity,macos,python,windows,pycharm,notepadpp,visualstudiocode,latex
/studies/e_1/
/studies/curious_study/

View File

@ -5,11 +5,25 @@ from networkx.algorithms.approximation import traveling_salesman as tsp
from environments.factory.base.objects import Agent
from environments.helpers import points_to_graph
from environments import helpers as h
from environments.helpers import Constants as c
from environments.helpers import Constants as BaseConstants
from environments.helpers import EnvActions as BaseActions
class Constants(BaseConstants):
DIRT = 'Dirt'
class Actions(BaseActions):
CLEAN_UP = 'do_cleanup_action'
a = Actions
c = Constants
future_planning = 7
class TSPDirtAgent(Agent):
def __init__(self, env, *args,
@ -26,7 +40,7 @@ class TSPDirtAgent(Agent):
def predict(self, *_, **__):
if self._env[c.DIRT].by_pos(self.pos) is not None:
# Translate the action_object to an integer to have the same output as any other model
action = h.EnvActions.CLEAN_UP
action = a.CLEAN_UP
elif any('door' in x.name.lower() for x in self.tile.guests):
door = next(x for x in self.tile.guests if 'door' in x.name.lower())
if door.is_closed:
@ -37,7 +51,7 @@ class TSPDirtAgent(Agent):
else:
action = self._predict_move()
# Translate the action_object to an integer to have the same output as any other model
action_obj = next(action_i for action_i, action_obj in enumerate(self._env._actions) if action_obj == action)
action_obj = next(action_i for action_name, action_i in self._env.named_action_space.items() if action_name == action)
return action_obj
def _predict_move(self):

View File

@ -1,221 +0,0 @@
from typing import NamedTuple, Union
from collections import deque, OrderedDict, defaultdict
import numpy as np
import random
import pandas as pd
import torch
import torch.nn as nn
from tqdm import trange
class Experience(NamedTuple):
# can be use for a single (s_t, a, r s_{t+1}) tuple
# or for a batch of tuples
observation: np.ndarray
next_observation: np.ndarray
action: np.ndarray
reward: Union[float, np.ndarray]
done : Union[bool, np.ndarray]
episode: int = -1
class BaseLearner:
def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1, stack_n_frames=1):
assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]'
self.env = env
self.n_agents = n_agents
self.n_grad_steps = n_grad_steps
self.train_every = train_every
self.stack_n_frames = deque(maxlen=stack_n_frames)
self.device = 'cpu'
self.n_updates = 0
self.step = 0
self.episode_step = 0
self.episode = 0
self.running_reward = deque(maxlen=5)
def to(self, device):
self.device = device
for attr, value in self.__dict__.items():
if isinstance(value, nn.Module):
value = value.to(self.device)
return self
def get_action(self, obs) -> Union[int, np.ndarray]:
pass
def on_new_experience(self, experience):
pass
def on_step_end(self, n_steps):
pass
def on_episode_end(self, n_steps):
pass
def on_all_done(self):
pass
def train(self):
pass
def reward(self, r):
return r
def learn(self, n_steps):
train_type, train_freq = self.train_every
while self.step < n_steps:
obs, done = self.env.reset(), False
total_reward = 0
self.episode_step = 0
while not done:
action = self.get_action(obs)
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
experience = Experience(observation=obs, next_observation=next_obs,
action=action, reward=self.reward(reward),
done=done, episode=self.episode) # do we really need to copy?
self.on_new_experience(experience)
# end of step routine
obs = next_obs
total_reward += reward
self.step += 1
self.episode_step += 1
self.on_step_end(n_steps)
if train_type == 'step' and (self.step % train_freq == 0):
self.train()
self.n_updates += 1
self.on_episode_end(n_steps)
if train_type == 'episode' and (self.episode % train_freq == 0):
self.train()
self.n_updates += 1
self.running_reward.append(total_reward)
self.episode += 1
try:
if self.step % 100 == 0:
print(
f'Step: {self.step} ({(self.step / n_steps) * 100:.2f}%)\tRunning reward: {sum(list(self.running_reward)) / len(self.running_reward):.2f}\t'
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
except Exception as e:
pass
self.on_all_done()
def evaluate(self, n_episodes=100, render=False):
with torch.no_grad():
data = []
for eval_i in trange(n_episodes):
obs, done = self.env.reset(), False
while not done:
action = self.get_action(obs)
next_obs, reward, done, info = self.env.step(action if not len(action) == 1 else action[0])
if render: self.env.render()
obs = next_obs # srsly i'm so stupid
info.update({'reward': reward, 'eval_episode': eval_i})
data.append(info)
return pd.DataFrame(data).fillna(0)
class BaseBuffer:
def __init__(self, size: int):
self.size = size
self.experience = deque(maxlen=size)
def __len__(self):
return len(self.experience)
def add(self, exp: Experience):
self.experience.append(exp)
def sample(self, k, cer=4):
sample = random.choices(self.experience, k=k-cer)
for i in range(cer): sample += [self.experience[-i]]
observations = torch.stack([torch.from_numpy(e.observation) for e in sample], 0).float()
next_observations = torch.stack([torch.from_numpy(e.next_observation) for e in sample], 0).float()
actions = torch.tensor([e.action for e in sample]).long()
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
#print(observations.shape, next_observations.shape, actions.shape, rewards.shape, dones.shape)
return Experience(observations, next_observations, actions, rewards, dones)
class TrajectoryBuffer(BaseBuffer):
def __init__(self, size):
super(TrajectoryBuffer, self).__init__(size)
self.experience = defaultdict(list)
def add(self, exp: Experience):
self.experience[exp.episode].append(exp)
if len(self.experience) > self.size:
oldest_traj_key = list(sorted(self.experience.keys()))[0]
del self.experience[oldest_traj_key]
def soft_update(local_model, target_model, tau):
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.-tau)*target_param.data)
def mlp_maker(dims, flatten=False, activation='elu', activation_last='identity'):
activations = {'elu': nn.ELU, 'relu': nn.ReLU, 'sigmoid': nn.Sigmoid,
'leaky_relu': nn.LeakyReLU, 'tanh': nn.Tanh,
'gelu': nn.GELU, 'identity': nn.Identity}
layers = [('Flatten', nn.Flatten())] if flatten else []
for i in range(1, len(dims)):
layers.append((f'Layer #{i - 1}: Linear', nn.Linear(dims[i - 1], dims[i])))
activation_str = activation if i != len(dims)-1 else activation_last
layers.append((f'Layer #{i - 1}: {activation_str.capitalize()}', activations[activation_str]()))
return nn.Sequential(OrderedDict(layers))
class BaseDQN(nn.Module):
def __init__(self, dims=[3*5*5, 64, 64, 9]):
super(BaseDQN, self).__init__()
self.net = mlp_maker(dims, flatten=True)
@torch.no_grad()
def act(self, x) -> np.ndarray:
action = self.forward(x).max(-1)[1].numpy()
return action
def forward(self, x):
return self.net(x)
class BaseDDQN(BaseDQN):
def __init__(self,
backbone_dims=[3*5*5, 64, 64],
value_dims=[64, 1],
advantage_dims=[64, 9],
activation='elu'):
super(BaseDDQN, self).__init__(backbone_dims)
self.net = mlp_maker(backbone_dims, activation=activation, flatten=True)
self.value_head = mlp_maker(value_dims)
self.advantage_head = mlp_maker(advantage_dims)
def forward(self, x):
features = self.net(x)
advantages = self.advantage_head(features)
values = self.value_head(features)
return values + (advantages - advantages.mean())
class BaseICM(nn.Module):
def __init__(self, backbone_dims=[2*3*5*5, 64, 64], head_dims=[2*64, 64, 9]):
super(BaseICM, self).__init__()
self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='relu', activation='relu')
self.icm = mlp_maker(head_dims)
self.ce = nn.CrossEntropyLoss()
def forward(self, s0, s1, a):
phi_s0 = self.backbone(s0)
phi_s1 = self.backbone(s1)
cat = torch.cat((phi_s0, phi_s1), dim=1)
a_prime = torch.softmax(self.icm(cat), dim=-1)
ce = self.ce(a_prime, a)
return dict(prediction=a_prime, loss=ce)

View File

@ -1,77 +0,0 @@
import numpy as np
import torch
import torch.nn.functional as F
from algorithms.q_learner import QLearner
class MQLearner(QLearner):
# Munchhausen Q-Learning
def __init__(self, *args, temperature=0.03, alpha=0.9, clip_l0=-1.0, **kwargs):
super(MQLearner, self).__init__(*args, **kwargs)
assert self.n_agents == 1, 'M-DQN currently only supports single agent training'
self.temperature = temperature
self.alpha = alpha
self.clip0 = clip_l0
def tau_ln_pi(self, qs):
# computes log(softmax(qs/temperature))
# Custom log-sum-exp trick from page 18 to compute the log-policy terms
v_k = qs.max(-1)[0].unsqueeze(-1)
advantage = qs - v_k
logsum = torch.logsumexp(advantage / self.temperature, -1).unsqueeze(-1)
tau_ln_pi = advantage - self.temperature * logsum
return tau_ln_pi
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
with torch.no_grad():
q_target_next = self.target_q_net(experience.next_observation)
tau_log_pi_next = self.tau_ln_pi(q_target_next)
q_k_targets = self.target_q_net(experience.observation)
log_pi = self.tau_ln_pi(q_k_targets)
pi_target = F.softmax(q_target_next / self.temperature, dim=-1)
q_target = (self.gamma * (pi_target * (q_target_next - tau_log_pi_next) * (1 - experience.done)).sum(-1)).unsqueeze(-1)
munchausen_addon = log_pi.gather(-1, experience.action)
munchausen_reward = (experience.reward + self.alpha * torch.clamp(munchausen_addon, min=self.clip0, max=0))
# Compute Q targets for current states
m_q_target = munchausen_reward + q_target
# Get expected Q values from local model
q_k = self.q_net(experience.observation)
pred_q = q_k.gather(-1, experience.action)
# Compute loss
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
self._backprop_loss(loss)
from tqdm import trange
from collections import deque
class MQICMLearner(MQLearner):
def __init__(self, *args, icm, **kwargs):
super(MQICMLearner, self).__init__(*args, **kwargs)
self.icm = icm
self.icm_optimizer = torch.optim.AdamW(self.icm.parameters())
self.normalize_reward = deque(maxlen=1000)
def on_all_done(self):
from collections import deque
losses = deque(maxlen=100)
for b in trange(10000):
batch = self.buffer.sample(128, 0)
s0, s1, a = batch.observation, batch.next_observation, batch.action
loss = self.icm(s0, s1, a.squeeze())['loss']
self.icm_optimizer.zero_grad()
loss.backward()
self.icm_optimizer.step()
losses.append(loss.item())
if b%100 == 0:
print(np.mean(losses))

View File

@ -0,0 +1,6 @@
from algorithms.marl.base_ac import BaseActorCritic
from algorithms.marl.iac import LoopIAC
from algorithms.marl.snac import LoopSNAC
from algorithms.marl.seac import LoopSEAC
from algorithms.marl.mappo import LoopMAPPO
from algorithms.marl.memory import MARLActorCriticMemory

221
algorithms/marl/base_ac.py Normal file
View File

@ -0,0 +1,221 @@
import torch
from typing import Union, List
import numpy as np
from torch.distributions import Categorical
from algorithms.marl.memory import MARLActorCriticMemory
from algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd
from collections import deque
class Names:
REWARD = 'reward'
DONE = 'done'
ACTION = 'action'
OBSERVATION = 'observation'
LOGITS = 'logits'
HIDDEN_ACTOR = 'hidden_actor'
HIDDEN_CRITIC = 'hidden_critic'
AGENT = 'agent'
ENV = 'env'
N_AGENTS = 'n_agents'
ALGORITHM = 'algorithm'
MAX_STEPS = 'max_steps'
N_STEPS = 'n_steps'
BUFFER_SIZE = 'buffer_size'
CRITIC = 'critic'
BATCH_SIZE = 'bnatch_size'
N_ACTIONS = 'n_actions'
nms = Names
ListOrTensor = Union[List, torch.Tensor]
class BaseActorCritic:
def __init__(self, cfg):
add_env_props(cfg)
self.__training = True
self.cfg = cfg
self.n_agents = cfg[nms.ENV][nms.N_AGENTS]
self.reset_memory_after_epoch = True
self.setup()
def setup(self):
self.net = instantiate_class(self.cfg[nms.AGENT])
self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5)
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def train(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.train()
def eval(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.eval()
def load_state_dict(self, path: Path):
pass
def get_actions(self, out) -> ListOrTensor:
actions = [Categorical(logits=logits).sample().item() for logits in out[nms.LOGITS]]
return actions
def init_hidden(self) -> dict[ListOrTensor]:
pass
def forward(self,
observations: ListOrTensor,
actions: ListOrTensor,
hidden_actor: ListOrTensor,
hidden_critic: ListOrTensor
) -> dict[ListOrTensor]:
pass
@torch.no_grad()
def train_loop(self, checkpointer=None):
env = instantiate_class(self.cfg[nms.ENV])
n_steps, max_steps = [self.cfg[nms.ALGORITHM][k] for k in [nms.N_STEPS, nms.MAX_STEPS]]
tm = MARLActorCriticMemory(self.n_agents, self.cfg[nms.ALGORITHM].get(nms.BUFFER_SIZE, n_steps))
global_steps, episode, df_results = 0, 0, []
reward_queue = deque(maxlen=2000)
while global_steps < max_steps:
obs = env.reset()
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log = [False] * self.n_agents, 0
if self.reset_memory_after_epoch:
tm.reset()
tm.add(observation=obs, action=last_action,
logits=torch.zeros(self.n_agents, 1, self.cfg[nms.AGENT][nms.N_ACTIONS]),
values=torch.zeros(self.n_agents, 1), reward=reward, done=done, **last_hiddens)
while not all(done):
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
done = [done] * self.n_agents if isinstance(done, bool) else done
last_hiddens = dict(hidden_actor =out[nms.HIDDEN_ACTOR],
hidden_critic=out[nms.HIDDEN_CRITIC])
tm.add(observation=obs, action=action, reward=reward, done=done,
logits=out.get(nms.LOGITS, None), values=out.get(nms.CRITIC, None),
**last_hiddens)
obs = next_obs
last_action = action
if (global_steps+1) % n_steps == 0 or all(done):
with torch.inference_mode(False):
self.learn(tm)
global_steps += 1
rew_log += sum(reward)
reward_queue.extend(reward)
if checkpointer is not None:
checkpointer.step([
(f'agent#{i}', agent)
for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net)
])
if global_steps >= max_steps:
break
print(f'reward at episode: {episode} = {rew_log}')
episode += 1
df_results.append([episode, rew_log, *reward])
df_results = pd.DataFrame(df_results, columns=['steps', 'reward', *[f'agent#{i}' for i in range(self.n_agents)]])
if checkpointer is not None:
df_results.to_csv(checkpointer.path / 'results.csv', index=False)
return df_results
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = instantiate_class(self.cfg[nms.ENV])
episode, results = 0, []
while episode < n_episodes:
obs = env.reset()
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
while not all(done):
if render: env.render()
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
if isinstance(done, bool): done = [done] * obs.shape[0]
obs = next_obs
last_action = action
last_hiddens = dict(hidden_actor=out.get(nms.HIDDEN_ACTOR, None),
hidden_critic=out.get(nms.HIDDEN_CRITIC, None)
)
eps_rew += torch.tensor(reward)
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
episode += 1
agent_columns = [f'agent#{i}' for i in range(self.cfg['env']['n_agents'])]
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'], value_name='reward', var_name='agent')
return results
@staticmethod
def compute_advantages(critic, reward, done, gamma, gae_coef=0.0):
tds = (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1]
if gae_coef <= 0:
return tds
gae = torch.zeros_like(tds[:, -1])
gaes = []
for t in range(tds.shape[1]-1, -1, -1):
gae = tds[:, t] + gamma * gae_coef * (1.0 - done[:, t]) * gae
gaes.insert(0, gae)
gaes = torch.stack(gaes, dim=1)
return gaes
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
out = network(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0])
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
critic = out[nms.CRITIC]
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
value_loss = advantages.pow(2).mean(-1) # n_agent
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
a2c_loss = -(advantages.detach() * log_ap).mean(-1)
# weighted loss
loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss
return loss.mean()
def learn(self, tm: MARLActorCriticMemory, **kwargs):
loss = self.actor_critic(tm, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
# remove next_obs, will be added in next iter
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
self.optimizer.step()

View File

@ -0,0 +1,24 @@
agent:
classname: algorithms.marl.networks.RecurrentAC
n_agents: 2
obs_emb_size: 96
action_emb_size: 16
hidden_size_actor: 64
hidden_size_critic: 64
use_agent_embedding: False
env:
classname: environments.factory.make
env_name: "DirtyFactory-v0"
n_agents: 2
max_steps: 250
pomdp_r: 2
stack_n_frames: 0
individual_rewards: True
method: algorithms.marl.LoopSEAC
algorithm:
gamma: 0.99
entropy_coef: 0.01
vf_coef: 0.5
n_steps: 5
max_steps: 1000000

57
algorithms/marl/iac.py Normal file
View File

@ -0,0 +1,57 @@
import torch
from algorithms.marl.base_ac import BaseActorCritic, nms
from algorithms.utils import instantiate_class
from pathlib import Path
from natsort import natsorted
from algorithms.marl.memory import MARLActorCriticMemory
class LoopIAC(BaseActorCritic):
def __init__(self, cfg):
super(LoopIAC, self).__init__(cfg)
def setup(self):
self.net = [
instantiate_class(self.cfg[nms.AGENT]) for _ in range(self.n_agents)
]
self.optimizer = [
torch.optim.RMSprop(self.net[ag_i].parameters(), lr=3e-4, eps=1e-5) for ag_i in range(self.n_agents)
]
def load_state_dict(self, path: Path):
paths = natsorted(list(path.glob('*.pt')))
for path, net in zip(paths, self.net):
net.load_state_dict(torch.load(path))
@staticmethod
def merge_dicts(ds): # todo could be recursive for more than 1 hierarchy
d = {}
for k in ds[0].keys():
d[k] = [d[k] for d in ds]
return d
def init_hidden(self):
ha = [net.init_hidden_actor() for net in self.net]
hc = [net.init_hidden_critic() for net in self.net]
return dict(hidden_actor=ha, hidden_critic=hc)
def forward(self, observations, actions, hidden_actor, hidden_critic):
outputs = [
net(
self._as_torch(observations[ag_i]).unsqueeze(0).unsqueeze(0), # agents x time
self._as_torch(actions[ag_i]).unsqueeze(0),
hidden_actor[ag_i],
hidden_critic[ag_i]
) for ag_i, net in enumerate(self.net)
]
return self.merge_dicts(outputs)
def learn(self, tms: MARLActorCriticMemory, **kwargs):
for ag_i in range(self.n_agents):
tm, net = tms(ag_i), self.net[ag_i]
loss = self.actor_critic(tm, net, **self.cfg[nms.ALGORITHM], **kwargs)
self.optimizer[ag_i].zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 0.5)
self.optimizer[ag_i].step()

67
algorithms/marl/mappo.py Normal file
View File

@ -0,0 +1,67 @@
from algorithms.marl.base_ac import Names as nms
from algorithms.marl import LoopSNAC
from algorithms.marl.memory import MARLActorCriticMemory
import random
import torch
from torch.distributions import Categorical
from algorithms.utils import instantiate_class
class LoopMAPPO(LoopSNAC):
def __init__(self, *args, **kwargs):
super(LoopMAPPO, self).__init__(*args, **kwargs)
self.reset_memory_after_epoch = False
def setup(self):
self.net = instantiate_class(self.cfg[nms.AGENT])
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=3e-4, eps=1e-5)
def learn(self, tm: MARLActorCriticMemory, **kwargs):
if len(tm) >= self.cfg['algorithm']['buffer_size']:
# only learn when buffer is full
for batch_i in range(self.cfg['algorithm']['n_updates']):
batch = tm.chunk_dataloader(chunk_len=self.cfg['algorithm']['n_steps'],
k=self.cfg['algorithm']['batch_size'])
loss = self.mappo(batch, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
self.optimizer.step()
def monte_carlo_returns(self, rewards, done, gamma):
rewards_ = []
discounted_reward = torch.zeros_like(rewards[:, -1])
for t in range(rewards.shape[1]-1, -1, -1):
discounted_reward = rewards[:, t] + (gamma * (1.0 - done[:, t]) * discounted_reward)
rewards_.insert(0, discounted_reward)
rewards_ = torch.stack(rewards_, dim=1)
return rewards_
def mappo(self, batch, network, gamma, entropy_coef, vf_coef, clip_range, **kwargs):
out = network(batch[nms.OBSERVATION], batch[nms.ACTION], batch[nms.HIDDEN_ACTOR], batch[nms.HIDDEN_CRITIC])
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
old_log_probs = torch.log_softmax(batch[nms.LOGITS], -1)
old_log_probs = torch.gather(old_log_probs, index=batch[nms.ACTION][:, 1:].unsqueeze(-1), dim=-1).squeeze()
# monte carlo returns
mc_returns = self.monte_carlo_returns(batch[nms.REWARD], batch[nms.DONE], gamma)
mc_returns = (mc_returns - mc_returns.mean()) / (mc_returns.std() + 1e-8) #todo: norm across agents ok?
advantages = mc_returns - out[nms.CRITIC][:, :-1]
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=batch[nms.ACTION][:, 1:].unsqueeze(-1)).squeeze()
ratio = (log_ap - old_log_probs).exp()
surr1 = ratio * advantages.detach()
surr2 = torch.clamp(ratio, 1 - clip_range, 1 + clip_range) * advantages.detach()
policy_loss = -torch.min(surr1, surr2).mean(-1)
# entropy & value loss
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
value_loss = advantages.pow(2).mean(-1) # n_agent
# weighted loss
loss = policy_loss + vf_coef*value_loss - entropy_coef * entropy_loss
return loss.mean()

221
algorithms/marl/memory.py Normal file
View File

@ -0,0 +1,221 @@
import numpy as np
from collections import deque
import torch
from typing import Union
from torch import Tensor
from torch.utils.data import Dataset, ConcatDataset
import random
class ActorCriticMemory(object):
def __init__(self, capacity=10):
self.capacity = capacity
self.reset()
def reset(self):
self.__actions = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__hidden_actor = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__hidden_critic = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__states = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__rewards = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__dones = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__logits = LazyTensorFiFoQueue(maxlen=self.capacity+1)
self.__values = LazyTensorFiFoQueue(maxlen=self.capacity+1)
def __len__(self):
return len(self.__rewards) - 1
@property
def observation(self, sls=slice(0, None)): # add time dimension through stacking
return self.__states[sls].unsqueeze(0) # 1 x time x hidden dim
@property
def hidden_actor(self, sls=slice(0, None)): # 1 x n_layers x dim
return self.__hidden_actor[sls].unsqueeze(0) # 1 x time x n_layers x dim
@property
def hidden_critic(self, sls=slice(0, None)): # 1 x n_layers x dim
return self.__hidden_critic[sls].unsqueeze(0) # 1 x time x n_layers x dim
@property
def reward(self, sls=slice(0, None)):
return self.__rewards[sls].squeeze().unsqueeze(0) # 1 x time
@property
def action(self, sls=slice(0, None)):
return self.__actions[sls].long().squeeze().unsqueeze(0) # 1 x time
@property
def done(self, sls=slice(0, None)):
return self.__dones[sls].float().squeeze().unsqueeze(0) # 1 x time
@property
def logits(self, sls=slice(0, None)): # assumes a trailing 1 for time dimension - common when using output from NN
return self.__logits[sls].squeeze().unsqueeze(0) # 1 x time x actions
@property
def values(self, sls=slice(0, None)):
return self.__values[sls].squeeze().unsqueeze(0) # 1 x time x actions
def add_observation(self, state: Union[Tensor, np.ndarray]):
self.__states.append(state if isinstance(state, Tensor) else torch.from_numpy(state))
def add_hidden_actor(self, hidden: Tensor):
# layers x hidden dim
self.__hidden_actor.append(hidden)
def add_hidden_critic(self, hidden: Tensor):
# layers x hidden dim
self.__hidden_critic.append(hidden)
def add_action(self, action: Union[int, Tensor]):
if not isinstance(action, Tensor):
action = torch.tensor(action)
self.__actions.append(action)
def add_reward(self, reward: Union[float, Tensor]):
if not isinstance(reward, Tensor):
reward = torch.tensor(reward)
self.__rewards.append(reward)
def add_done(self, done: bool):
if not isinstance(done, Tensor):
done = torch.tensor(done)
self.__dones.append(done)
def add_logits(self, logits: Tensor):
self.__logits.append(logits)
def add_values(self, values: Tensor):
self.__values.append(values)
def add(self, **kwargs):
for k, v in kwargs.items():
func = getattr(ActorCriticMemory, f'add_{k}')
func(self, v)
class MARLActorCriticMemory(object):
def __init__(self, n_agents, capacity):
self.n_agents = n_agents
self.memories = [
ActorCriticMemory(capacity) for _ in range(n_agents)
]
def __call__(self, agent_i):
return self.memories[agent_i]
def __len__(self):
return len(self.memories[0]) # todo add assertion check!
def reset(self):
for mem in self.memories:
mem.reset()
def add(self, **kwargs):
for agent_i in range(self.n_agents):
for k, v in kwargs.items():
func = getattr(ActorCriticMemory, f'add_{k}')
func(self.memories[agent_i], v[agent_i])
def __getattr__(self, attr):
all_attrs = [getattr(mem, attr) for mem in self.memories]
return torch.cat(all_attrs, 0) # agents x time ...
def chunk_dataloader(self, chunk_len, k):
datasets = [ExperienceChunks(mem, chunk_len, k) for mem in self.memories]
dataset = ConcatDataset(datasets)
data = [dataset[i] for i in range(len(dataset))]
data = custom_collate_fn(data)
return data
def custom_collate_fn(batch):
elem = batch[0]
return {key: torch.cat([d[key] for d in batch], dim=0) for key in elem}
class ExperienceChunks(Dataset):
def __init__(self, memory, chunk_len, k):
assert chunk_len <= len(memory), 'chunk_len cannot be longer than the size of the memory'
self.memory = memory
self.chunk_len = chunk_len
self.k = k
@property
def whitelist(self):
whitelist = torch.ones(len(self.memory) - self.chunk_len)
for d in self.memory.done.squeeze().nonzero().flatten():
whitelist[max((0, d-self.chunk_len-1)):d+2] = 0
whitelist[0] = 0
return whitelist.tolist()
def sample(self, start=1):
cl = self.chunk_len
sample = dict(observation=self.memory.observation[:, start:start+cl+1],
action=self.memory.action[:, start-1:start+cl],
hidden_actor=self.memory.hidden_actor[:, start-1],
hidden_critic=self.memory.hidden_critic[:, start-1],
reward=self.memory.reward[:, start:start + cl],
done=self.memory.done[:, start:start + cl],
logits=self.memory.logits[:, start:start + cl],
values=self.memory.values[:, start:start + cl])
return sample
def __len__(self):
return self.k
def __getitem__(self, i):
idx = random.choices(range(0, len(self.memory) - self.chunk_len), weights=self.whitelist, k=1)
return self.sample(idx[0])
class LazyTensorFiFoQueue:
def __init__(self, maxlen):
self.maxlen = maxlen
self.reset()
def reset(self):
self.__lazy_queue = deque(maxlen=self.maxlen)
self.shape = None
self.queue = None
def shape_init(self, tensor: Tensor):
self.shape = torch.Size([self.maxlen, *tensor.shape])
def build_tensor_queue(self):
if len(self.__lazy_queue) > 0:
block = torch.stack(list(self.__lazy_queue), dim=0)
l = block.shape[0]
if self.queue is None:
self.queue = block
elif self.true_len() <= self.maxlen:
self.queue = torch.cat((self.queue, block), dim=0)
else:
self.queue = torch.cat((self.queue[l:], block), dim=0)
self.__lazy_queue.clear()
def append(self, data):
if self.shape is None:
self.shape_init(data)
self.__lazy_queue.append(data)
if len(self.__lazy_queue) >= self.maxlen:
self.build_tensor_queue()
def true_len(self):
return len(self.__lazy_queue) + (0 if self.queue is None else self.queue.shape[0])
def __len__(self):
return min((self.true_len(), self.maxlen))
def __str__(self):
return f'LazyTensorFiFoQueue\tmaxlen: {self.maxlen}, shape: {self.shape}, ' \
f'len: {len(self)}, true_len: {self.true_len()}, elements in lazy queue: {len(self.__lazy_queue)}'
def __getitem__(self, item_or_slice):
self.build_tensor_queue()
return self.queue[item_or_slice]

104
algorithms/marl/networks.py Normal file
View File

@ -0,0 +1,104 @@
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torch.nn.utils import spectral_norm
class RecurrentAC(nn.Module):
def __init__(self, observation_size, n_actions, obs_emb_size,
action_emb_size, hidden_size_actor, hidden_size_critic,
n_agents, use_agent_embedding=True):
super(RecurrentAC, self).__init__()
observation_size = np.prod(observation_size)
self.n_layers = 1
self.n_actions = n_actions
self.use_agent_embedding = use_agent_embedding
self.hidden_size_actor = hidden_size_actor
self.hidden_size_critic = hidden_size_critic
self.action_emb_size = action_emb_size
self.obs_proj = nn.Linear(observation_size, obs_emb_size)
self.action_emb = nn.Embedding(n_actions+1, action_emb_size, padding_idx=0)
self.agent_emb = nn.Embedding(n_agents, action_emb_size)
mix_in_size = obs_emb_size+action_emb_size if not use_agent_embedding else obs_emb_size+n_agents*action_emb_size
self.mix = nn.Sequential(nn.Tanh(),
nn.Linear(mix_in_size, obs_emb_size),
nn.Tanh(),
nn.Linear(obs_emb_size, obs_emb_size)
)
self.gru_actor = nn.GRU(obs_emb_size, hidden_size_actor, batch_first=True, num_layers=self.n_layers)
self.gru_critic = nn.GRU(obs_emb_size, hidden_size_critic, batch_first=True, num_layers=self.n_layers)
self.action_head = nn.Sequential(
nn.Linear(hidden_size_actor, hidden_size_actor),
nn.Tanh(),
nn.Linear(hidden_size_actor, n_actions)
)
# spectral_norm(nn.Linear(hidden_size_actor, hidden_size_actor)),
self.critic_head = nn.Sequential(
nn.Linear(hidden_size_critic, hidden_size_critic),
nn.Tanh(),
nn.Linear(hidden_size_critic, 1)
)
#self.action_head[-1].weight.data.uniform_(-3e-3, 3e-3)
#self.action_head[-1].bias.data.uniform_(-3e-3, 3e-3)
def init_hidden_actor(self):
return torch.zeros(1, self.n_layers, self.hidden_size_actor)
def init_hidden_critic(self):
return torch.zeros(1, self.n_layers, self.hidden_size_critic)
def forward(self, observations, actions, hidden_actor=None, hidden_critic=None):
n_agents, t, *_ = observations.shape
obs_emb = self.obs_proj(observations.view(n_agents, t, -1).float())
action_emb = self.action_emb(actions+1) # shift by one due to padding idx
if not self.use_agent_embedding:
x_t = torch.cat((obs_emb, action_emb), -1)
else:
agent_emb = self.agent_emb(
torch.cat([torch.arange(0, n_agents, 1).view(-1, 1)] * t, 1)
)
x_t = torch.cat((obs_emb, agent_emb, action_emb), -1)
mixed_x_t = self.mix(x_t)
output_p, _ = self.gru_actor(input=mixed_x_t, hx=hidden_actor.swapaxes(1, 0))
output_c, _ = self.gru_critic(input=mixed_x_t, hx=hidden_critic.swapaxes(1, 0))
logits = self.action_head(output_p)
critic = self.critic_head(output_c).squeeze(-1)
return dict(logits=logits, critic=critic, hidden_actor=output_p, hidden_critic=output_c)
class RecurrentACL2(RecurrentAC):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.action_head = nn.Sequential(
nn.Linear(self.hidden_size_actor, self.hidden_size_actor),
nn.Tanh(),
NormalizedLinear(self.hidden_size_actor, self.n_actions, trainable_magnitude=True)
)
class NormalizedLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int,
device=None, dtype=None, trainable_magnitude=False):
super(NormalizedLinear, self).__init__(in_features, out_features, False, device, dtype)
self.d_sqrt = in_features**0.5
self.trainable_magnitude = trainable_magnitude
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
def forward(self, input):
normalized_input = F.normalize(input, dim=-1, p=2, eps=1e-5)
normalized_weight = F.normalize(self.weight, dim=-1, p=2, eps=1e-5)
return F.linear(normalized_input, normalized_weight) * self.d_sqrt * self.scale
class L2Norm(nn.Module):
def __init__(self, in_features, trainable_magnitude=False):
super(L2Norm, self).__init__()
self.d_sqrt = in_features**0.5
self.scale = nn.Parameter(torch.tensor([1.]), requires_grad=trainable_magnitude)
def forward(self, x):
return F.normalize(x, dim=-1, p=2, eps=1e-5) * self.d_sqrt * self.scale

56
algorithms/marl/seac.py Normal file
View File

@ -0,0 +1,56 @@
import torch
from torch.distributions import Categorical
from algorithms.marl.iac import LoopIAC
from algorithms.marl.base_ac import nms
from algorithms.marl.memory import MARLActorCriticMemory
class LoopSEAC(LoopIAC):
def __init__(self, cfg):
super(LoopSEAC, self).__init__(cfg)
def actor_critic(self, tm, networks, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done[:, 1:], tm.reward[:, 1:]
outputs = [net(obs, actions, tm.hidden_actor[:, 0], tm.hidden_critic[:, 0]) for net in networks]
with torch.inference_mode(True):
true_action_logp = torch.stack([
torch.log_softmax(out[nms.LOGITS][ag_i, :-1], -1)
.gather(index=actions[ag_i, 1:, None], dim=-1)
for ag_i, out in enumerate(outputs)
], 0).squeeze()
losses = []
for ag_i, out in enumerate(outputs):
logits = out[nms.LOGITS][:, :-1] # last one only needed for v_{t+1}
critic = out[nms.CRITIC]
entropy_loss = Categorical(logits=logits[ag_i]).entropy().mean()
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
# importance weights
iw = (log_ap - true_action_logp).exp().detach() # importance_weights
a2c_loss = (-iw*log_ap * advantages.detach()).mean(-1)
value_loss = (iw*advantages.pow(2)).mean(-1) # n_agent
# weighted loss
loss = (a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss).mean()
losses.append(loss)
return losses
def learn(self, tms: MARLActorCriticMemory, **kwargs):
losses = self.actor_critic(tms, self.net, **self.cfg[nms.ALGORITHM], **kwargs)
for ag_i, loss in enumerate(losses):
self.optimizer[ag_i].zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net[ag_i].parameters(), 0.5)
self.optimizer[ag_i].step()

33
algorithms/marl/snac.py Normal file
View File

@ -0,0 +1,33 @@
from algorithms.marl.base_ac import BaseActorCritic
from algorithms.marl.base_ac import nms
import torch
from torch.distributions import Categorical
from pathlib import Path
class LoopSNAC(BaseActorCritic):
def __init__(self, cfg):
super().__init__(cfg)
def load_state_dict(self, path: Path):
path2weights = list(path.glob('*.pt'))
assert len(path2weights) == 1, f'Expected a single set of weights but got {len(path2weights)}'
self.net.load_state_dict(torch.load(path2weights[0]))
def init_hidden(self):
hidden_actor = self.net.init_hidden_actor()
hidden_critic = self.net.init_hidden_critic()
return dict(hidden_actor=torch.cat([hidden_actor] * self.n_agents, 0),
hidden_critic=torch.cat([hidden_critic] * self.n_agents, 0)
)
def get_actions(self, out):
actions = Categorical(logits=out[nms.LOGITS]).sample().squeeze()
return actions
def forward(self, observations, actions, hidden_actor, hidden_critic):
out = self.net(self._as_torch(observations).unsqueeze(1),
self._as_torch(actions).unsqueeze(1),
hidden_actor, hidden_critic
)
return out

View File

@ -1,127 +0,0 @@
from typing import Union
import gym
import torch
import torch.nn as nn
import numpy as np
from collections import deque
from pathlib import Path
import yaml
from algorithms.common import BaseLearner, BaseBuffer, soft_update, Experience
class QLearner(BaseLearner):
def __init__(self, q_net, target_q_net, env, buffer_size=1e5, target_update=3000, eps_end=0.05, n_agents=1,
gamma=0.99, train_every=('step', 4), n_grad_steps=1, tau=1.0, max_grad_norm=10, weight_decay=1e-2,
exploration_fraction=0.2, batch_size=64, lr=1e-4, reg_weight=0.0, eps_start=1):
super(QLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
self.q_net = q_net
self.target_q_net = target_q_net
self.target_q_net.eval()
#soft_update(self.q_net, self.target_q_net, tau=1.0)
self.buffer = BaseBuffer(buffer_size)
self.target_update = target_update
self.eps = eps_start
self.eps_start = eps_start
self.eps_end = eps_end
self.exploration_fraction = exploration_fraction
self.batch_size = batch_size
self.gamma = gamma
self.tau = tau
self.reg_weight = reg_weight
self.weight_decay = weight_decay
self.lr = lr
self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr, weight_decay=self.weight_decay)
self.max_grad_norm = max_grad_norm
self.running_reward = deque(maxlen=5)
self.running_loss = deque(maxlen=5)
self.n_updates = 0
def save(self, path):
path = Path(path) # no-op if already instance of Path
path.mkdir(parents=True, exist_ok=True)
hparams = {k: v for k, v in self.__dict__.items() if not(isinstance(v, BaseBuffer) or
isinstance(v, torch.optim.Optimizer) or
isinstance(v, gym.Env) or
isinstance(v, nn.Module))
}
hparams.update({'class': self.__class__.__name__})
with (path / 'hparams.yaml').open('w') as outfile:
yaml.dump(hparams, outfile)
torch.save(self.q_net, path / 'q_net.pt')
def anneal_eps(self, step, n_steps):
fraction = min(float(step) / int(self.exploration_fraction*n_steps), 1.0)
self.eps = 1 + fraction * (self.eps_end - 1)
def get_action(self, obs) -> Union[int, np.ndarray]:
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
if np.random.rand() > self.eps:
action = self.q_net.act(o.float())
else:
action = np.array([self.env.action_space.sample() for _ in range(self.n_agents)])
return action
def on_new_experience(self, experience):
self.buffer.add(experience)
def on_step_end(self, n_steps):
self.anneal_eps(self.step, n_steps)
if self.step % self.target_update == 0:
print('UPDATE')
soft_update(self.q_net, self.target_q_net, tau=self.tau)
def _training_routine(self, obs, next_obs, action):
current_q_values = self.q_net(obs)
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
return current_q_values, next_q_values_raw
def _backprop_loss(self, loss):
# log loss
self.running_loss.append(loss.item())
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.q_net.parameters(), self.max_grad_norm)
self.optimizer.step()
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
pred_q, target_q_raw = self._training_routine(experience.observation,
experience.next_observation,
experience.action)
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
self._backprop_loss(loss)
if __name__ == '__main__':
from environments.factory.factory_dirt import DirtFactory, DirtProperties, MovementProperties
from algorithms.common import BaseDDQN, BaseICM
from algorithms.m_q_learner import MQLearner, MQICMLearner
from algorithms.vdn_learner import VDNLearner
N_AGENTS = 1
with (Path(f'../environments/factory/env_default_param.yaml')).open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env = DirtFactory(**env_kwargs)
obs_shape = np.prod(env.observation_space.shape)
n_actions = env.action_space.n
dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu'),\
BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu')
icm = BaseICM(backbone_dims=[obs_shape, 64, 32], head_dims=[2*32, 64, n_actions])
learner = MQICMLearner(dqn, target_dqn, env, 50000, icm=icm,
target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25,
batch_size=64, weight_decay=1e-3
)
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
learner.learn(100000)

View File

@ -1,52 +0,0 @@
import numpy as np
import torch
import stable_baselines3 as sb3
from stable_baselines3.common import logger
class RegDQN(sb3.dqn.DQN):
def __init__(self, *args, reg_weight=0.1, **kwargs):
super().__init__(*args, **kwargs)
self.reg_weight = reg_weight
def train(self, gradient_steps: int, batch_size: int = 100) -> None:
# Update learning rate according to schedule
self._update_learning_rate(self.policy.optimizer)
losses = []
for _ in range(gradient_steps):
# Sample replay buffer
replay_data = self.replay_buffer.sample(batch_size, env=self._vec_normalize_env)
with torch.no_grad():
# Compute the next Q-values using the target network
next_q_values = self.q_net_target(replay_data.next_observations)
# Follow greedy policy: use the one with the highest value
next_q_values, _ = next_q_values.max(dim=1)
# Avoid potential broadcast issue
next_q_values = next_q_values.reshape(-1, 1)
# 1-step TD target
target_q_values = replay_data.rewards + (1 - replay_data.dones) * self.gamma * next_q_values
# Get current Q-values estimates
current_q_values = self.q_net(replay_data.observations)
# Retrieve the q-values for the actions from the replay buffer
current_q_values = torch.gather(current_q_values, dim=1, index=replay_data.actions.long())
delta = current_q_values - target_q_values
loss = torch.mean(self.reg_weight * current_q_values + torch.pow(delta, 2))
losses.append(loss.item())
# Optimize the policy
self.policy.optimizer.zero_grad()
loss.backward()
# Clip gradient norm
torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.policy.optimizer.step()
# Increase update counter
self._n_updates += gradient_steps
logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
logger.record("train/loss", np.mean(losses))

View File

@ -3,14 +3,51 @@ import torch
import numpy as np
import yaml
from pathlib import Path
from salina import instantiate_class
from salina import TAgent
from salina.agents.gyma import (
AutoResetGymAgent,
_torch_type,
_format_frame,
_torch_cat_dict
)
def load_class(classname):
from importlib import import_module
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
def instantiate_class(arguments):
from importlib import import_module
d = dict(arguments)
classname = d["classname"]
del d["classname"]
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c(**d)
def get_class(arguments):
from importlib import import_module
if isinstance(arguments, dict):
classname = arguments["classname"]
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
else:
classname = arguments.classname
module_path, class_name = classname.rsplit(".", 1)
module = import_module(module_path)
c = getattr(module, class_name)
return c
def get_arguments(arguments):
from importlib import import_module
d = dict(arguments)
if "classname" in d:
del d["classname"]
return d
def load_yaml_file(path: Path):
@ -21,90 +58,29 @@ def load_yaml_file(path: Path):
def add_env_props(cfg):
env = instantiate_class(cfg['env'].copy())
cfg['agent'].update(dict(observation_size=env.observation_space.shape,
cfg['agent'].update(dict(observation_size=list(env.observation_space.shape),
n_actions=env.action_space.n))
class Checkpointer(object):
def __init__(self, experiment_name, root, config, total_steps, n_checkpoints):
self.path = root / experiment_name
self.checkpoint_indices = list(np.linspace(1, total_steps, n_checkpoints, dtype=int) - 1)
self.__current_checkpoint = 0
self.__current_step = 0
self.path.mkdir(exist_ok=True, parents=True)
with (self.path / 'config.yaml').open('w') as outfile:
yaml.dump(config, outfile, default_flow_style=False)
def save_experiment(self, name: str, model):
cpt_path = self.path / f'checkpoint_{self.__current_checkpoint}'
cpt_path.mkdir(exist_ok=True, parents=True)
torch.save(model.state_dict(), cpt_path / f'{name}.pt')
AGENT_PREFIX = 'agent#'
REWARD = 'reward'
CUMU_REWARD = 'cumulated_reward'
OBS = 'env_obs'
SEP = '_'
ACTION = 'action'
def access_str(agent_i, name, prefix=''):
return f'{prefix}{AGENT_PREFIX}{agent_i}{SEP}{name}'
class AutoResetGymMultiAgent(AutoResetGymAgent):
def __init__(self, *args, **kwargs):
super(AutoResetGymMultiAgent, self).__init__(*args, **kwargs)
def per_agent_values(self, name, values):
return {access_str(agent_i, name): value
for agent_i, value in zip(range(self.n_agents), values)}
def _initialize_envs(self, n):
super()._initialize_envs(n)
n_agents_list = [self.envs[i].unwrapped.n_agents for i in range(n)]
assert all(n_agents == n_agents_list[0] for n_agents in n_agents_list), \
'All envs must have the same number of agents.'
self.n_agents = n_agents_list[0]
def _reset(self, k, save_render):
ret = super()._reset(k, save_render)
obs = ret['env_obs'].squeeze()
self.cumulated_reward[k] = [0.0]*self.n_agents
obs = self.per_agent_values(OBS, [_format_frame(obs[i]) for i in range(self.n_agents)])
cumu_rew = self.per_agent_values(CUMU_REWARD, torch.zeros(self.n_agents, 1).float().unbind())
rewards = self.per_agent_values(REWARD, torch.zeros(self.n_agents, 1).float().unbind())
ret.update(cumu_rew)
ret.update(rewards)
ret.update(obs)
for remove in ['env_obs', 'cumulated_reward', 'reward']:
del ret[remove]
return ret
def _step(self, k, action, save_render):
self.timestep[k] += 1
env = self.envs[k]
if len(action.size()) == 0:
action = action.item()
assert isinstance(action, int)
else:
action = np.array(action.tolist())
o, r, d, _ = env.step(action)
self.cumulated_reward[k] = [x+y for x, y in zip(r, self.cumulated_reward[k])]
observation = self.per_agent_values(OBS, [_format_frame(o[i]) for i in range(self.n_agents)])
if d:
self.is_running[k] = False
if save_render:
image = env.render(mode="image").unsqueeze(0)
observation["rendering"] = image
rewards = self.per_agent_values(REWARD, torch.tensor(r).float().view(-1, 1).unbind())
cumulated_rewards = self.per_agent_values(CUMU_REWARD, torch.tensor(self.cumulated_reward[k]).float().view(-1, 1).unbind())
ret = {
**observation,
**rewards,
**cumulated_rewards,
"done": torch.tensor([d]),
"initial_state": torch.tensor([False]),
"timestep": torch.tensor([self.timestep[k]])
}
return _torch_type(ret)
class CombineActionsAgent(TAgent):
def __init__(self):
super().__init__()
self.pattern = fr'^{AGENT_PREFIX}\d{SEP}{ACTION}$'
def forward(self, t, **kwargs):
keys = list(self.workspace.keys())
action_keys = sorted([k for k in keys if bool(re.match(self.pattern, k))])
actions = torch.cat([self.get((k, t)) for k in action_keys], 0)
actions = actions if len(action_keys) <= 1 else actions.unsqueeze(0)
self.set((f'action', t), actions)
def step(self, to_save):
if self.__current_step in self.checkpoint_indices:
print(f'Checkpointing #{self.__current_checkpoint}')
for name, model in to_save:
self.save_experiment(name, model)
self.__current_checkpoint += 1
self.__current_step += 1

View File

@ -1,55 +0,0 @@
from typing import Union
import torch
import numpy as np
import pandas as pd
from algorithms.q_learner import QLearner
class VDNLearner(QLearner):
def __init__(self, *args, **kwargs):
super(VDNLearner, self).__init__(*args, **kwargs)
assert self.n_agents >= 2, 'VDN requires more than one agent, use QLearner instead'
def get_action(self, obs) -> Union[int, np.ndarray]:
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
eps = np.random.rand(self.n_agents)
greedy = eps > self.eps
agent_actions = None
actions = []
for i in range(self.n_agents):
if greedy[i]:
if agent_actions is None: agent_actions = self.q_net.act(o.float())
action = agent_actions[i]
else:
action = self.env.action_space.sample()
actions.append(action)
return np.array(actions)
def train(self):
if len(self.buffer) < self.batch_size: return
for _ in range(self.n_grad_steps):
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
for agent_i in range(self.n_agents):
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
experience.next_observation[:, agent_i],
experience.action[:, agent_i].unsqueeze(-1))
pred_q += q_values
target_q_raw += next_q_values_raw
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
self._backprop_loss(loss)
def evaluate(self, n_episodes=100, render=False):
with torch.no_grad():
data = []
for eval_i in range(n_episodes):
obs, done = self.env.reset(), False
while not done:
action = self.get_action(obs)
next_obs, reward, done, info = self.env.step(action)
if render: self.env.render()
obs = next_obs # srsly i'm so stupid
info.update({'reward': reward, 'eval_episode': eval_i})
data.append(info)
return pd.DataFrame(data).fillna(0)

View File

@ -3,20 +3,23 @@ def make(env_name, pomdp_r=2, max_steps=400, stack_n_frames=3, n_agents=1, indi
from pathlib import Path
from environments.factory.combined_factories import DirtItemFactory
from environments.factory.factory_item import ItemFactory, ItemProperties
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
from environments.factory.factory_dirt import DirtProperties, DirtFactory, RewardsDirt
from environments.utility_classes import AgentRenderOptions
with (Path(__file__).parent / 'levels' / 'parameters' / f'{env_name}.yaml').open('r') as stream:
dictionary = yaml.load(stream, Loader=yaml.FullLoader)
obs_props = ObservationProperties(render_agents=AgentRenderOptions.COMBINED,
frames_to_stack=stack_n_frames, pomdp_r=pomdp_r)
obs_props = dict(render_agents=AgentRenderOptions.COMBINED,
pomdp_r=pomdp_r,
indicate_door_area=True,
show_global_position_info=False,
frames_to_stack=stack_n_frames)
factory_kwargs = dict(n_agents=n_agents, individual_rewards=individual_rewards,
max_steps=max_steps, obs_prop=obs_props,
mv_prop=MovementProperties(**dictionary['movement_props']),
dirt_prop=DirtProperties(**dictionary['dirt_props']),
record_episodes=False, verbose=False, **dictionary['factory_props']
factory_kwargs = dict(**dictionary,
n_agents=n_agents,
individual_rewards=individual_rewards,
max_steps=max_steps,
obs_prop=obs_props,
verbose=False,
)
return DirtFactory(**factory_kwargs).__enter__()

View File

@ -1,7 +1,7 @@
import abc
import time
from collections import defaultdict
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import List, Union, Iterable, Dict
import numpy as np
@ -11,10 +11,13 @@ from gym import spaces
from gym.wrappers import FrameStack
from environments.factory.base.shadow_casting import Map
from environments.helpers import Constants as c, Constants
from environments import helpers as h
from environments.factory.base.objects import Agent, Tile, Action
from environments.factory.base.registers import Actions, Entities, Agents, Doors, FloorTiles, WallTiles, PlaceHolders
from environments.helpers import Constants as c
from environments.helpers import EnvActions as a
from environments.helpers import RewardsBase
from environments.factory.base.objects import Agent, Floor, Action
from environments.factory.base.registers import Actions, Entities, Agents, Doors, Floors, Walls, PlaceHolders, \
GlobalPositions
from environments.utility_classes import MovementProperties, ObservationProperties, MarlFrameStack
from environments.utility_classes import AgentRenderOptions as a_obs
@ -30,17 +33,30 @@ class BaseFactory(gym.Env):
def action_space(self):
return spaces.Discrete(len(self._actions))
@property
def named_action_space(self):
return {x.identifier: idx for idx, x in enumerate(self._actions.values())}
@property
def observation_space(self):
if r := self._pomdp_r:
z = self._obs_cube.shape[0]
xy = r*2 + 1
level_shape = (z, xy, xy)
obs, _ = self._build_observations()
if self.n_agents > 1:
shape = obs[0].shape
else:
level_shape = self._obs_cube.shape
space = spaces.Box(low=0, high=1, shape=level_shape, dtype=np.float32)
shape = obs.shape
space = spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
return space
@property
def named_observation_space(self):
# Build it
_, named_obs = self._build_observations()
if self.n_agents > 1:
# Only return the first named obs space, as their structure at the moment is same.
return named_obs[list(named_obs.keys())[0]]
else:
return named_obs
@property
def pomdp_diameter(self):
return self._pomdp_r * 2 + 1
@ -52,6 +68,7 @@ class BaseFactory(gym.Env):
@property
def params(self) -> dict:
d = {key: val for key, val in self.__dict__.items() if not key.startswith('_') and not key.startswith('__')}
d['class_name'] = self.__class__.__name__
return d
def __enter__(self):
@ -64,17 +81,26 @@ class BaseFactory(gym.Env):
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2),
mv_prop: MovementProperties = MovementProperties(),
obs_prop: ObservationProperties = ObservationProperties(),
rewards_base: RewardsBase = RewardsBase(),
parse_doors=False, done_at_collision=False, inject_agents: Union[None, List] = None,
verbose=False, doors_have_area=True, env_seed=time.time_ns(), individual_rewards=False,
**kwargs):
class_name='', **kwargs):
if class_name:
print(f'You loaded parameters for {class_name}', f'this is: {self.__class__.__name__}')
if isinstance(mv_prop, dict):
mv_prop = MovementProperties(**mv_prop)
if isinstance(obs_prop, dict):
obs_prop = ObservationProperties(**obs_prop)
if isinstance(rewards_base, dict):
rewards_base = RewardsBase(**rewards_base)
assert obs_prop.frames_to_stack != 1 and \
obs_prop.frames_to_stack >= 0, "'frames_to_stack' cannot be negative or 1."
obs_prop.frames_to_stack >= 0, \
"'frames_to_stack' cannot be negative or 1."
assert doors_have_area or not obs_prop.indicate_door_area, \
'"indicate_door_area" can only active, when "doors_have_area"'
if kwargs:
print(f'Following kwargs were passed, but ignored: {kwargs}')
@ -84,13 +110,17 @@ class BaseFactory(gym.Env):
self._base_rng = np.random.default_rng(self.env_seed)
self.mv_prop = mv_prop
self.obs_prop = obs_prop
self.rewards_base = rewards_base
self.level_name = level_name
self._level_shape = None
self._obs_shape = None
self.verbose = verbose
self._renderer = None # expensive - don't use it when not required !
self._entities = Entities()
self.n_agents = n_agents
level_filepath = Path(__file__).parent.parent / h.LEVELS_DIR / f'{self.level_name}.txt'
self._parsed_level = h.parse_level(level_filepath)
self.max_steps = max_steps
self._pomdp_r = self.obs_prop.pomdp_r
@ -102,7 +132,7 @@ class BaseFactory(gym.Env):
self.doors_have_area = doors_have_area
self.individual_rewards = individual_rewards
# Reset
# TODO: Reset ---> document this
self.reset()
def __getitem__(self, item):
@ -114,57 +144,59 @@ class BaseFactory(gym.Env):
# Objects
self._entities = Entities()
# Level
level_filepath = Path(__file__).parent.parent / h.LEVELS_DIR / f'{self.level_name}.txt'
parsed_level = h.parse_level(level_filepath)
level_array = h.one_hot_level(parsed_level)
level_array = h.one_hot_level(self._parsed_level)
level_array = np.pad(level_array, self.obs_prop.pomdp_r, 'constant', constant_values=1)
self._level_shape = level_array.shape
self._obs_shape = self._level_shape if not self.obs_prop.pomdp_r else (self.pomdp_diameter, ) * 2
# Walls
walls = WallTiles.from_argwhere_coordinates(
np.argwhere(level_array == c.OCCUPIED_CELL.value),
walls = Walls.from_argwhere_coordinates(
np.argwhere(level_array == c.OCCUPIED_CELL),
self._level_shape
)
self._entities.register_additional_items({c.WALLS: walls})
# Floor
floor = FloorTiles.from_argwhere_coordinates(
np.argwhere(level_array == c.FREE_CELL.value),
floor = Floors.from_argwhere_coordinates(
np.argwhere(level_array == c.FREE_CELL),
self._level_shape
)
self._entities.register_additional_items({c.FLOOR: floor})
# NOPOS
self._NO_POS_TILE = Tile(c.NO_POS.value)
self._NO_POS_TILE = Floor(c.NO_POS, None)
# Doors
if self.parse_doors:
parsed_doors = h.one_hot_level(parsed_level, c.DOOR)
parsed_doors = h.one_hot_level(self._parsed_level, c.DOOR)
parsed_doors = np.pad(parsed_doors, self.obs_prop.pomdp_r, 'constant', constant_values=0)
if np.any(parsed_doors):
door_tiles = [floor.by_pos(pos) for pos in np.argwhere(parsed_doors == c.OCCUPIED_CELL.value)]
doors = Doors.from_tiles(door_tiles, self._level_shape,
door_tiles = [floor.by_pos(tuple(pos)) for pos in np.argwhere(parsed_doors == c.OCCUPIED_CELL)]
doors = Doors.from_tiles(door_tiles, self._level_shape, have_area=self.obs_prop.indicate_door_area,
entity_kwargs=dict(context=floor)
)
self._entities.register_additional_items({c.DOORS: doors})
# Actions
self._actions = Actions(self.mv_prop, can_use_doors=self.parse_doors)
if additional_actions := self.additional_actions:
if additional_actions := self.actions_hook:
self._actions.register_additional_items(additional_actions)
# Agents
agents_to_spawn = self.n_agents-len(self._injected_agents)
agents_kwargs = dict(level_shape=self._level_shape,
individual_slices=self.obs_prop.render_agents == a_obs.SEPERATE,
hide_from_obs_builder=self.obs_prop.render_agents == a_obs.LEVEL,
is_observable=self.obs_prop.render_agents != a_obs.NOT)
agents_kwargs = dict(individual_slices=self.obs_prop.render_agents == a_obs.SEPERATE,
hide_from_obs_builder=self.obs_prop.render_agents in [a_obs.NOT, a_obs.LEVEL],
)
if agents_to_spawn:
agents = Agents.from_tiles(floor.empty_tiles[:agents_to_spawn], **agents_kwargs)
agents = Agents.from_tiles(floor.empty_tiles[:agents_to_spawn], self._level_shape, **agents_kwargs)
else:
agents = Agents(**agents_kwargs)
agents = Agents(self._level_shape, **agents_kwargs)
if self._injected_agents:
initialized_injections = list()
for i, injection in enumerate(self._injected_agents):
agents.register_item(injection(self, floor.empty_tiles[agents_to_spawn+i+1], static_problem=False))
agents.register_item(injection(self, floor.empty_tiles[0], agents, static_problem=False))
initialized_injections.append(agents[-1])
self._initialized_injections = initialized_injections
self._entities.register_additional_items({c.AGENT: agents})
@ -173,7 +205,7 @@ class BaseFactory(gym.Env):
# TODO: Make this accept Lists for multiple placeholders
# Empty Observations with either [0, 1, N(0, 1)]
placeholder = PlaceHolders.from_tiles([self._NO_POS_TILE], self._level_shape,
placeholder = PlaceHolders.from_values(self.obs_prop.additional_agent_placeholder, self._level_shape,
entity_kwargs=dict(
fill_value=self.obs_prop.additional_agent_placeholder)
)
@ -181,27 +213,26 @@ class BaseFactory(gym.Env):
self._entities.register_additional_items({c.AGENT_PLACEHOLDER: placeholder})
# Additional Entitites from SubEnvs
if additional_entities := self.additional_entities:
if additional_entities := self.entities_hook:
self._entities.register_additional_items(additional_entities)
if self.obs_prop.show_global_position_info:
global_positions = GlobalPositions(self._level_shape)
# This moved into the GlobalPosition object
# obs_shape_2d = self._level_shape if not self._pomdp_r else ((self.pomdp_diameter,) * 2)
global_positions.spawn_global_position_objects(self[c.AGENT])
self._entities.register_additional_items({c.GLOBAL_POSITION: global_positions})
# Return
return self._entities
def _init_obs_cube(self):
arrays = self._entities.obs_arrays
obs_cube_z = sum([a.shape[0] if not self[key].is_per_agent else 1 for key, a in arrays.items()])
obs_cube_z += 1 if self.obs_prop.show_global_position_info else 0
self._obs_cube = np.zeros((obs_cube_z, *self._level_shape), dtype=np.float32)
def reset(self) -> (np.ndarray, int, bool, dict):
def reset(self) -> (np.typing.ArrayLike, int, bool, dict):
_ = self._base_init_env()
self._init_obs_cube()
self.do_additional_reset()
self.reset_hook()
self._steps = 0
obs = self._get_observations()
obs, _ = self._build_observations()
return obs
def step(self, actions):
@ -213,39 +244,53 @@ class BaseFactory(gym.Env):
self._steps += 1
# Pre step Hook for later use
self.hook_pre_step()
self.pre_step_hook()
# Move this in a seperate function?
for action, agent in zip(actions, self[c.AGENT]):
agent.clear_temp_state()
action_obj = self._actions[int(action)]
# self.print(f'Action #{action} has been resolved to: {action_obj}')
if h.MovingAction.is_member(action_obj):
valid = self._move_or_colide(agent, action_obj)
elif h.EnvActions.NOOP == agent.temp_action:
valid = c.VALID
elif h.EnvActions.USE_DOOR == action_obj:
valid = self._handle_door_interaction(agent)
step_result = dict(collisions=[], rewards=[], info={}, action_name='', action_valid=False)
# cls.print(f'Action #{action} has been resolved to: {action_obj}')
if a.is_move(action_obj):
action_valid, reward = self._do_move_action(agent, action_obj)
elif a.NOOP == action_obj:
action_valid = c.VALID
reward = dict(value=self.rewards_base.NOOP, reason=a.NOOP, info={f'{agent.name}_NOOP': 1, 'NOOP': 1})
elif a.USE_DOOR == action_obj:
action_valid, reward = self._handle_door_interaction(agent)
else:
valid = self.do_additional_actions(agent, action_obj)
assert valid is not None, 'This should not happen, every Action musst be detected correctly!'
agent.temp_action = action_obj
agent.temp_valid = valid
# In-between step Hook for later use
info = self.do_additional_step()
# noinspection PyTupleAssignmentBalance
action_valid, reward = self.do_additional_actions(agent, action_obj)
# Not needed any more sice the tuple assignment above will fail in case of a failing action resolvement.
# assert step_result is not None, 'This should not happen, every Action musst be detected correctly!'
step_result['action_name'] = action_obj.identifier
step_result['action_valid'] = action_valid
step_result['rewards'].append(reward)
agent.step_result = step_result
# Additional step and Reward, Info Init
rewards, info = self.step_hook()
# Todo: Make this faster, so that only tiles of entities that can collide are searched.
tiles_with_collisions = self.get_all_tiles_with_collisions()
for tile in tiles_with_collisions:
guests = tile.guests_that_can_collide
for i, guest in enumerate(guests):
# This does make a copy, but is faster than.copy()
this_collisions = guests[:]
del this_collisions[i]
guest.temp_collisions = this_collisions
assert hasattr(guest, 'step_result')
for collision in this_collisions:
guest.step_result['collisions'].append(collision)
done = self.done_at_collision and tiles_with_collisions
done = False
if self.done_at_collision:
if done_at_col := bool(tiles_with_collisions):
done = done_at_col
info.update(COLLISION_DONE=done_at_col)
done = done or self.check_additional_done()
additional_done, additional_done_info = self.check_additional_done()
done = done or additional_done
info.update(additional_done_info)
# Step the door close intervall
if self.parse_doors:
@ -253,7 +298,8 @@ class BaseFactory(gym.Env):
doors.tick_doors()
# Finalize
reward, reward_info = self.calculate_reward()
reward, reward_info = self.build_reward_result(rewards)
info.update(reward_info)
if self._steps >= self.max_steps:
done = True
@ -262,13 +308,13 @@ class BaseFactory(gym.Env):
info.update(self._summarize_state())
# Post step Hook for later use
info.update(self.hook_post_step())
info.update(self.post_step_hook())
obs = self._get_observations()
obs, _ = self._build_observations()
return obs, reward, done, info
def _handle_door_interaction(self, agent) -> c:
def _handle_door_interaction(self, agent) -> (bool, dict):
if doors := self[c.DOORS]:
# Check if agent really is standing on a door:
if self.doors_have_area:
@ -277,83 +323,103 @@ class BaseFactory(gym.Env):
door = doors.by_pos(agent.pos)
if door is not None:
door.use()
return c.VALID
valid = c.VALID
self.print(f'{agent.name} just used a {door.name} at {door.pos}')
info_dict = {f'{agent.name}_door_use': 1, f'door_use': 1}
# When he doesn't...
else:
return c.NOT_VALID
valid = c.NOT_VALID
info_dict = {f'{agent.name}_failed_door_use': 1, 'failed_door_use': 1}
self.print(f'{agent.name} just tried to use a door at {agent.pos}, but there is none.')
else:
return c.NOT_VALID
raise RuntimeError('This should not happen, since the door action should not be available.')
reward = dict(value=self.rewards_base.USE_DOOR_VALID if valid else self.rewards_base.USE_DOOR_FAIL,
reason=a.USE_DOOR, info=info_dict)
def _get_observations(self) -> np.ndarray:
state_array_dict = self._entities.obs_arrays
if self.n_agents == 1:
obs = self._build_per_agent_obs(self[c.AGENT][0], state_array_dict)
elif self.n_agents >= 2:
obs = np.stack([self._build_per_agent_obs(agent, state_array_dict) for agent in self[c.AGENT]])
return valid, reward
def _build_observations(self) -> np.typing.ArrayLike:
# Observation dict:
per_agent_expl_idx = dict()
per_agent_obsn = dict()
# Generel Observations
lvl_obs = self[c.WALLS].as_array()
door_obs = self[c.DOORS].as_array() if self.parse_doors else None
if self.obs_prop.render_agents == a_obs.NOT:
global_agent_obs = None
elif self.obs_prop.omit_agent_self and self.n_agents == 1:
global_agent_obs = None
else:
raise ValueError('n_agents cannot be smaller than 1!!')
return obs
global_agent_obs = self[c.AGENT].as_array().copy()
placeholder_obs = self[c.AGENT_PLACEHOLDER].as_array() if self[c.AGENT_PLACEHOLDER] else None
add_obs_dict = self.observations_hook()
def _build_per_agent_obs(self, agent: Agent, state_array_dict) -> np.ndarray:
agent_pos_is_omitted = False
agent_omit_idx = None
for agent_idx, agent in enumerate(self[c.AGENT]):
obs_dict = dict()
# Build Agent Observations
if self.obs_prop.render_agents != a_obs.NOT:
if self.obs_prop.omit_agent_self and self.n_agents >= 2:
if self.obs_prop.render_agents == a_obs.SEPERATE:
other_agent_obs_idx = [x for x in range(self.n_agents) if x != agent_idx]
agent_obs = np.take(global_agent_obs, other_agent_obs_idx, axis=0)
else:
agent_obs = global_agent_obs.copy()
agent_obs[(0, *agent.pos)] -= agent.encoding
else:
agent_obs = global_agent_obs
else:
agent_obs = global_agent_obs
if self.obs_prop.omit_agent_self and self.n_agents == 1:
# Build Level Observations
if self.obs_prop.render_agents == a_obs.LEVEL:
lvl_obs = lvl_obs.copy()
lvl_obs += global_agent_obs
obs_dict[c.WALLS] = lvl_obs
if self.obs_prop.render_agents in [a_obs.SEPERATE, a_obs.COMBINED] and agent_obs is not None:
obs_dict[c.AGENT] = agent_obs[:]
if self[c.AGENT_PLACEHOLDER] and placeholder_obs is not None:
obs_dict[c.AGENT_PLACEHOLDER] = placeholder_obs
if self.parse_doors and door_obs is not None:
obs_dict[c.DOORS] = door_obs[:]
obs_dict.update(add_obs_dict)
obsn = np.vstack(list(obs_dict.values()))
if self.obs_prop.pomdp_r:
obsn = self._do_pomdp_cutout(agent, obsn)
raw_obs = self.per_agent_raw_observations_hook(agent)
raw_obs = {key: np.expand_dims(val, 0) if val.ndim != 3 else val for key, val in raw_obs.items()}
obsn = np.vstack((obsn, *raw_obs.values()))
keys = list(chain(obs_dict.keys(), raw_obs.keys()))
idxs = np.cumsum([x.shape[0] for x in chain(obs_dict.values(), raw_obs.values())]) - 1
per_agent_expl_idx[agent.name] = {key: list(range(d, b)) for key, d, b in
zip(keys, idxs, list(idxs[1:]) + [idxs[-1]+1, ])}
# Shadow Casting
if agent.step_result is not None:
pass
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents in [a_obs.COMBINED, ] and self.n_agents > 1:
state_array_dict[c.AGENT][0, agent.x, agent.y] -= agent.encoding
agent_pos_is_omitted = True
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents == a_obs.SEPERATE and self.n_agents > 1:
agent_omit_idx = next((i for i, a in enumerate(self[c.AGENT]) if a == agent))
running_idx, shadowing_idxs, can_be_shadowed_idxs = 0, [], []
self._obs_cube[:] = 0
# FIXME: Refactor this! Make a globally build observation, then add individual per-agent-obs
for key, array in state_array_dict.items():
# Flush state array object representation to obs cube
if not self[key].hide_from_obs_builder:
if self[key].is_per_agent:
per_agent_idx = self[key].idx_by_entity(agent)
z = 1
self._obs_cube[running_idx: running_idx+z] = array[per_agent_idx]
else:
if key == c.AGENT and agent_omit_idx is not None:
z = array.shape[0] - 1
for array_idx in range(array.shape[0]):
self._obs_cube[running_idx: running_idx+z] = array[[x for x in range(array.shape[0])
if x != agent_omit_idx]]
# Agent OBS are combined
elif key == c.AGENT and self.obs_prop.omit_agent_self \
and self.obs_prop.render_agents == a_obs.COMBINED:
z = 1
self._obs_cube[running_idx: running_idx + z] = array
# Each Agent is rendered on a seperate array slice
else:
z = array.shape[0]
self._obs_cube[running_idx: running_idx + z] = array
# Define which OBS SLices cast a Shadow
if self[key].is_blocking_light:
for i in range(z):
shadowing_idxs.append(running_idx + i)
# Define which OBS SLices are effected by shadows
if self[key].can_be_shadowed:
for i in range(z):
can_be_shadowed_idxs.append(running_idx + i)
running_idx += z
if agent_pos_is_omitted:
state_array_dict[c.AGENT][0, agent.x, agent.y] += agent.encoding
if self._pomdp_r:
obs = self._do_pomdp_obs_cutout(agent, self._obs_cube)
else:
obs = self._obs_cube
obs = obs.copy()
assert self._steps == 0
agent.step_result = {'action_name': a.NOOP, 'action_valid': True,
'collisions': [], 'lightmap': None}
if self.obs_prop.cast_shadows:
obs_block_light = [obs[idx] != c.OCCUPIED_CELL.value for idx in shadowing_idxs]
try:
light_block_obs = [obs_idx for key, obs_idx in per_agent_expl_idx[agent.name].items()
if self[key].is_blocking_light]
# Flatten
light_block_obs = [x for y in light_block_obs for x in y]
shadowed_obs = [obs_idx for key, obs_idx in per_agent_expl_idx[agent.name].items()
if self[key].can_be_shadowed]
# Flatten
shadowed_obs = [x for y in shadowed_obs for x in y]
except AttributeError as e:
print('Check your Keys! Only use Constants as Keys!')
print(e)
raise e
obs_block_light = obsn[light_block_obs] != c.OCCUPIED_CELL
door_shadowing = False
if self.parse_doors:
if doors := self[c.DOORS]:
@ -363,16 +429,17 @@ class BaseFactory(gym.Env):
if agent.last_pos not in group:
door_shadowing = True
if self._pomdp_r:
blocking = [tuple(np.subtract(x, agent.pos) + (self._pomdp_r, self._pomdp_r))
blocking = [
tuple(np.subtract(x, agent.pos) + (self._pomdp_r, self._pomdp_r))
for x in group]
xs, ys = zip(*blocking)
else:
xs, ys = zip(*group)
# noinspection PyUnresolvedReferences
obs_block_light[0][xs, ys] = False
obs_block_light[:, xs, ys] = False
light_block_map = Map((np.prod(obs_block_light, axis=0) != True).astype(int))
light_block_map = Map((np.prod(obs_block_light, axis=0) != True).astype(int).squeeze())
if self._pomdp_r:
light_block_map = light_block_map.do_fov(self._pomdp_r, self._pomdp_r, max(self._level_shape))
else:
@ -380,61 +447,51 @@ class BaseFactory(gym.Env):
if door_shadowing:
# noinspection PyUnboundLocalVariable
light_block_map[xs, ys] = 0
agent.temp_light_map = light_block_map
for obs_idx in can_be_shadowed_idxs:
obs[obs_idx] = ((obs[obs_idx] * light_block_map) + 0.) - (1 - light_block_map) # * obs[0])
agent.step_result['lightmap'] = light_block_map
obsn[shadowed_obs] = ((obsn[shadowed_obs] * light_block_map) + 0.) - (1 - light_block_map)
else:
pass
# Agents observe other agents as wall
if self.obs_prop.render_agents == a_obs.LEVEL and self.n_agents > 1:
other_agent_obs = self[c.AGENT].as_array()
if self.obs_prop.omit_agent_self:
other_agent_obs[:, agent.x, agent.y] -= agent.encoding
if self.obs_prop.pomdp_r:
oobs = self._do_pomdp_obs_cutout(agent, other_agent_obs)[0]
# noinspection PyUnresolvedReferences
mask = (oobs != c.SHADOWED_CELL.value).astype(int)
obs[0] += oobs * mask
if self._pomdp_r:
agent.step_result['lightmap'] = np.ones(self._obs_shape)
else:
obs[0] += other_agent_obs
agent.step_result['lightmap'] = None
# Additional Observation:
for additional_obs in self.additional_obs_build():
obs[running_idx:running_idx+additional_obs.shape[0]] = additional_obs
running_idx += additional_obs.shape[0]
for additional_per_agent_obs in self.additional_per_agent_obs_build(agent):
obs[running_idx:running_idx + additional_per_agent_obs.shape[0]] = additional_per_agent_obs
running_idx += additional_per_agent_obs.shape[0]
per_agent_obsn[agent.name] = obsn
return obs
if self.n_agents == 1:
agent_name = self[c.AGENT][0].name
obs, explained_idx = per_agent_obsn[agent_name], per_agent_expl_idx[agent_name]
elif self.n_agents >= 2:
obs, explained_idx = np.stack(list(per_agent_obsn.values())), per_agent_expl_idx
else:
raise ValueError
def _do_pomdp_obs_cutout(self, agent, obs_to_be_padded):
return obs, explained_idx
def _do_pomdp_cutout(self, agent, obs_to_be_padded):
assert obs_to_be_padded.ndim == 3
r, d = self._pomdp_r, self.pomdp_diameter
x0, x1 = max(0, agent.x - r), min(agent.x + r + 1, self._level_shape[0])
y0, y1 = max(0, agent.y - r), min(agent.y + r + 1, self._level_shape[1])
# Other Agent Obs = oobs
ra, d = self._pomdp_r, self.pomdp_diameter
x0, x1 = max(0, agent.x - ra), min(agent.x + ra + 1, self._level_shape[0])
y0, y1 = max(0, agent.y - ra), min(agent.y + ra + 1, self._level_shape[1])
oobs = obs_to_be_padded[:, x0:x1, y0:y1]
if oobs.shape[0:] != (d, d):
if oobs.shape[1:] != (d, d):
if xd := oobs.shape[1] % d:
if agent.x > r:
if agent.x > ra:
x0_pad = 0
x1_pad = (d - xd)
else:
x0_pad = r - agent.x
x0_pad = ra - agent.x
x1_pad = 0
else:
x0_pad, x1_pad = 0, 0
if yd := oobs.shape[2] % d:
if agent.y > r:
if agent.y > ra:
y0_pad = 0
y1_pad = (d - yd)
else:
y0_pad = r - agent.y
y0_pad = ra - agent.y
y1_pad = 0
else:
y0_pad, y1_pad = 0, 0
@ -442,25 +499,41 @@ class BaseFactory(gym.Env):
oobs = np.pad(oobs, ((0, 0), (x0_pad, x1_pad), (y0_pad, y1_pad)), 'constant')
return oobs
def get_all_tiles_with_collisions(self) -> List[Tile]:
def get_all_tiles_with_collisions(self) -> List[Floor]:
tiles = [x for x in self[c.FLOOR] if len(x.guests_that_can_collide) > 1]
if False:
tiles_with_collisions = list()
for tile in self[c.FLOOR]:
if tile.is_occupied():
guests = tile.guests_that_can_collide
if len(guests) >= 2:
tiles_with_collisions.append(tile)
return tiles_with_collisions
return tiles
def _move_or_colide(self, agent: Agent, action: Action) -> Constants:
def _do_move_action(self, agent: Agent, action: Action) -> (dict, dict):
info_dict = dict()
new_tile, valid = self._check_agent_move(agent, action)
if valid:
# Does not collide width level boundaries
return agent.move(new_tile)
valid = agent.move(new_tile)
if valid:
# This will spam your logs, beware!
self.print(f'{agent.name} just moved {action.identifier} from {agent.last_pos} to {agent.pos}.')
info_dict.update({f'{agent.name}_move': 1, 'move': 1})
pass
else:
# Agent seems to be trying to collide in this step
return c.NOT_VALID
valid = c.NOT_VALID
self.print(f'{agent.name} just hit the wall at {agent.pos}. ({action.identifier})')
info_dict.update({f'{agent.name}_wall_collide': 1, 'wall_collide': 1})
else:
# Agent seems to be trying to Leave the level
self.print(f'{agent.name} tried to leave the level {agent.pos}. ({action.identifier})')
info_dict.update({f'{agent.name}_wall_collide': 1, 'wall_collide': 1})
reward_value = self.rewards_base.MOVEMENTS_VALID if valid else self.rewards_base.MOVEMENTS_FAIL
reward = {'value': reward_value, 'reason': action.identifier, 'info': info_dict}
return valid, reward
def _check_agent_move(self, agent, action: Action) -> (Tile, bool):
def _check_agent_move(self, agent, action: Action) -> (Floor, bool):
# Actions
x_diff, y_diff = h.ACTIONMAP[action.identifier]
x_new = agent.x + x_diff
@ -478,7 +551,7 @@ class BaseFactory(gym.Env):
if doors := self[c.DOORS]:
if self.doors_have_area:
if door := doors.by_pos(new_tile.pos):
if door.can_collide:
if door.is_closed:
return agent.tile, c.NOT_VALID
else: # door.is_closed:
pass
@ -498,78 +571,61 @@ class BaseFactory(gym.Env):
return new_tile, valid
def calculate_reward(self) -> (int, dict):
def build_reward_result(self, global_env_rewards: list) -> (int, dict):
# Returns: Reward, Info
per_agent_info_dict = defaultdict(dict)
reward = {}
info = defaultdict(lambda: 0.0)
# Gather additional sub-env rewards and calculate collisions
for agent in self[c.AGENT]:
per_agent_reward = 0
if self._actions.is_moving_action(agent.temp_action):
if agent.temp_valid:
# info_dict.update(movement=1)
per_agent_reward -= 0.001
rewards = self.per_agent_reward_hook(agent)
for reward in rewards:
agent.step_result['rewards'].append(reward)
if collisions := agent.step_result['collisions']:
self.print(f't = {self._steps}\t{agent.name} has collisions with {collisions}')
info[c.COLLISION] += 1
reward = {'value': self.rewards_base.COLLISION,
'reason': c.COLLISION,
'info': {f'{agent.name}_{c.COLLISION}': 1}}
agent.step_result['rewards'].append(reward)
else:
# No Collisions, nothing to do
pass
else:
per_agent_reward -= 0.05
self.print(f'{agent.name} just hit the wall at {agent.pos}.')
per_agent_info_dict[agent.name].update({f'{agent.name}_vs_LEVEL': 1})
elif h.EnvActions.USE_DOOR == agent.temp_action:
if agent.temp_valid:
# per_agent_reward += 0.00
self.print(f'{agent.name} did just use the door at {agent.pos}.')
per_agent_info_dict[agent.name].update(door_used=1)
else:
# per_agent_reward -= 0.00
self.print(f'{agent.name} just tried to use a door at {agent.pos}, but failed.')
per_agent_info_dict[agent.name].update({f'{agent.name}_failed_door_open': 1})
elif h.EnvActions.NOOP == agent.temp_action:
per_agent_info_dict[agent.name].update(no_op=1)
# per_agent_reward -= 0.00
# EnvMonitor Notes
if agent.temp_valid:
per_agent_info_dict[agent.name].update(valid_action=1)
per_agent_info_dict[agent.name].update({f'{agent.name}_valid_action': 1})
else:
per_agent_info_dict[agent.name].update(failed_action=1)
per_agent_info_dict[agent.name].update({f'{agent.name}_failed_action': 1})
additional_reward, additional_info_dict = self.calculate_additional_reward(agent)
per_agent_reward += additional_reward
per_agent_info_dict[agent.name].update(additional_info_dict)
if agent.temp_collisions:
self.print(f't = {self._steps}\t{agent.name} has collisions with {agent.temp_collisions}')
per_agent_info_dict[agent.name].update(collisions=1)
for other_agent in agent.temp_collisions:
per_agent_info_dict[agent.name].update({f'{agent.name}_vs_{other_agent.name}': 1})
reward[agent.name] = per_agent_reward
comb_rewards = {agent.name: sum(x['value'] for x in agent.step_result['rewards']) for agent in self[c.AGENT]}
# Combine the per_agent_info_dict:
combined_info_dict = defaultdict(lambda: 0)
for info_dict in per_agent_info_dict.values():
for key, value in info_dict.items():
combined_info_dict[key] += value
combined_info_dict = dict(combined_info_dict)
for agent in self[c.AGENT]:
for reward in agent.step_result['rewards']:
combined_info_dict.update(reward['info'])
combined_info_dict = dict(combined_info_dict)
combined_info_dict.update(info)
global_reward_sum = sum(global_env_rewards)
if self.individual_rewards:
self.print(f"rewards are {reward}")
reward = list(reward.values())
self.print(f"rewards are {comb_rewards}")
reward = list(comb_rewards.values())
reward = [x + global_reward_sum for x in reward]
return reward, combined_info_dict
else:
reward = sum(reward.values())
reward = sum(comb_rewards.values()) + global_reward_sum
self.print(f"reward is {reward}")
return reward, combined_info_dict
def start_recording(self):
self._record_episodes = True
def stop_recording(self):
self._record_episodes = False
# noinspection PyGlobalUndefined
def render(self, mode='human'):
if not self._renderer: # lazy init
from environments.factory.base.renderer import Renderer, RenderEntity
global Renderer, RenderEntity
height, width = self._obs_cube.shape[1:]
height, width = self._level_shape
self._renderer = Renderer(width, height, view_radius=self._pomdp_r, fps=5)
# noinspection PyUnboundLocalVariable
@ -578,13 +634,13 @@ class BaseFactory(gym.Env):
agents = []
for i, agent in enumerate(self[c.AGENT]):
name, state = h.asset_str(agent)
agents.append(RenderEntity(name, agent.pos, 1, 'none', state, i + 1, agent.temp_light_map))
agents.append(RenderEntity(name, agent.pos, 1, 'none', state, i + 1, agent.step_result['lightmap']))
doors = []
if self.parse_doors:
for i, door in enumerate(self[c.DOORS]):
name, state = 'door_open' if door.is_open else 'door_closed', 'blank'
doors.append(RenderEntity(name, door.pos, 1, 'none', state, i + 1))
additional_assets = self.render_additional_assets()
additional_assets = self.render_assets_hook()
return self._renderer.render(walls + doors + additional_assets + agents)
@ -615,7 +671,8 @@ class BaseFactory(gym.Env):
# Properties which are called by the base class to extend beyond attributes of the base class
@property
def additional_actions(self) -> Union[Action, List[Action]]:
@abc.abstractmethod
def actions_hook(self) -> Union[Action, List[Action]]:
"""
When heriting from this Base Class, you musst implement this methode!!!
@ -625,7 +682,8 @@ class BaseFactory(gym.Env):
return []
@property
def additional_entities(self) -> Dict[(Enum, Entities)]:
@abc.abstractmethod
def entities_hook(self) -> Dict[(str, Entities)]:
"""
When heriting from this Base Class, you musst implement this methode!!!
@ -637,49 +695,46 @@ class BaseFactory(gym.Env):
# Functions which provide additions to functions of the base class
# Always call super!!!!!!
@abc.abstractmethod
def additional_obs_build(self) -> List[np.ndarray]:
return []
def additional_per_agent_obs_build(self, agent) -> List[np.ndarray]:
additional_per_agent_obs = []
if self.obs_prop.show_global_position_info:
pos_array = np.zeros(self.observation_space.shape[1:])
for xy in range(1):
pos_array[0, xy] = agent.pos[xy] / self._level_shape[xy]
additional_per_agent_obs.append(pos_array)
return additional_per_agent_obs
@abc.abstractmethod
def do_additional_reset(self) -> None:
def reset_hook(self) -> None:
pass
@abc.abstractmethod
def do_additional_step(self) -> dict:
return {}
def pre_step_hook(self) -> None:
pass
@abc.abstractmethod
def do_additional_actions(self, agent: Agent, action: Action) -> Union[None, c]:
def do_additional_actions(self, agent: Agent, action: Action) -> (bool, dict):
return None
@abc.abstractmethod
def check_additional_done(self) -> bool:
return False
def step_hook(self) -> (List[dict], dict):
return [], {}
@abc.abstractmethod
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
return 0, {}
def check_additional_done(self) -> (bool, dict):
return False, {}
@abc.abstractmethod
def render_additional_assets(self):
return []
# Hooks for in between operations.
# Always call super!!!!!!
@abc.abstractmethod
def hook_pre_step(self) -> None:
pass
@abc.abstractmethod
def hook_post_step(self) -> dict:
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
return {}
@abc.abstractmethod
def per_agent_reward_hook(self, agent: Agent) -> Dict[str, dict]:
return {}
@abc.abstractmethod
def post_step_hook(self) -> dict:
return {}
@abc.abstractmethod
def per_agent_raw_observations_hook(self, agent) -> Dict[str, np.typing.ArrayLike]:
additional_raw_observations = {}
if self.obs_prop.show_global_position_info:
global_pos_obs = np.zeros(self._obs_shape)
global_pos_obs[:2, 0] = self[c.GLOBAL_POSITION].by_entity(agent).encoding
additional_raw_observations.update({c.GLOBAL_POSITION: global_pos_obs})
return additional_raw_observations
@abc.abstractmethod
def render_assets_hook(self):
return []

View File

@ -1,54 +1,51 @@
from collections import defaultdict
from enum import Enum
from typing import Union
import networkx as nx
import numpy as np
from environments import helpers as h
from environments.helpers import Constants as c
import itertools
##########################################################################
# ##################### Base Object Building Blocks ######################### #
##########################################################################
# TODO: Missing Documentation
class Object:
"""Generell Objects for Organisation and Maintanance such as Actions etc..."""
_u_idx = defaultdict(lambda: 0)
def __bool__(self):
return True
@property
def is_blocking_light(self):
return self._is_blocking_light
@property
def name(self):
return self._name
@property
def identifier(self):
if self._enum_ident is not None:
return self._enum_ident
elif self._str_ident is not None:
if self._str_ident is not None:
return self._str_ident
else:
return self._name
def __init__(self, str_ident: Union[str, None] = None, enum_ident: Union[Enum, None] = None,
is_blocking_light=False, **kwargs):
def __init__(self, str_ident: Union[str, None] = None, **kwargs):
self._str_ident = str_ident
self._enum_ident = enum_ident
if self._enum_ident is not None and self._str_ident is None:
self._name = f'{self.__class__.__name__}[{self._enum_ident.name}]'
elif self._str_ident is not None and self._enum_ident is None:
if self._str_ident is not None:
self._name = f'{self.__class__.__name__}[{self._str_ident}]'
elif self._str_ident is None and self._enum_ident is None:
self._name = f'{self.__class__.__name__}#{self._u_idx[self.__class__.__name__]}'
elif self._str_ident is None:
self._name = f'{self.__class__.__name__}#{Object._u_idx[self.__class__.__name__]}'
Object._u_idx[self.__class__.__name__] += 1
else:
raise ValueError('Please use either of the idents.')
self._is_blocking_light = is_blocking_light
if kwargs:
print(f'Following kwargs were passed, but ignored: {kwargs}')
@ -56,27 +53,44 @@ class Object:
return f'{self.name}'
def __eq__(self, other) -> bool:
if self._enum_ident is not None:
if isinstance(other, Enum):
return other == self._enum_ident
elif isinstance(other, Object):
return other._enum_ident == self._enum_ident
else:
raise ValueError('Must be evaluated against an Enunm Identifier or Object with such.')
else:
assert isinstance(other, Object), ' This Object can only be compared to other Objects.'
return other.name == self.name
return other == self.identifier
# Base
class Entity(Object):
# TODO: Missing Documentation
class EnvObject(Object):
"""Objects that hold Information that are observable, but have no position on the env grid. Inventories etc..."""
_u_idx = defaultdict(lambda: 0)
@property
def can_collide(self):
return True
return False
@property
def encoding(self):
return c.OCCUPIED_CELL.value
return c.OCCUPIED_CELL
def __init__(self, register, **kwargs):
super(EnvObject, self).__init__(**kwargs)
self._register = register
def change_register(self, register):
register.register_item(self)
self._register.delete_env_object(self)
self._register = register
return self._register == register
# With Rendering
# TODO: Missing Documentation
class Entity(EnvObject):
"""Full Env Entity that lives on the env Grid. Doors, Items, Dirt etc..."""
@property
def can_collide(self):
return False
@property
def x(self):
@ -94,8 +108,8 @@ class Entity(Object):
def tile(self):
return self._tile
def __init__(self, tile, **kwargs):
super().__init__(**kwargs)
def __init__(self, tile, *args, **kwargs):
super().__init__(*args, **kwargs)
self._tile = tile
tile.enter(self)
@ -104,9 +118,11 @@ class Entity(Object):
tile=str(self.tile.name), can_collide=bool(self.can_collide))
def __repr__(self):
return f'{self.name}(@{self.pos})'
return super(Entity, self).__repr__() + f'(@{self.pos})'
# With Position in Env
# TODO: Missing Documentation
class MoveableEntity(Entity):
@property
@ -137,9 +153,36 @@ class MoveableEntity(Entity):
curr_tile.leave(self)
self._tile = next_tile
self._last_tile = curr_tile
return True
self._register.notify_change_to_value(self)
return c.VALID
else:
return False
return c.NOT_VALID
# Can Move
# TODO: Missing Documentation
class BoundingMixin(Object):
@property
def bound_entity(self):
return self._bound_entity
def __init__(self,entity_to_be_bound, *args, **kwargs):
super(BoundingMixin, self).__init__(*args, **kwargs)
assert entity_to_be_bound is not None
self._bound_entity = entity_to_be_bound
@property
def name(self):
return f'{super(BoundingMixin, self).name}({self._bound_entity.name})'
def belongs_to_entity(self, entity):
return entity == self.bound_entity
##########################################################################
# ####################### Objects and Entitys ########################## #
##########################################################################
class Action(Object):
@ -148,34 +191,45 @@ class Action(Object):
super().__init__(*args, **kwargs)
class PlaceHolder(MoveableEntity):
class PlaceHolder(Object):
def __init__(self, *args, fill_value=0, **kwargs):
super().__init__(*args, **kwargs)
self._fill_value = fill_value
@property
def last_tile(self):
return self.tile
@property
def direction_of_view(self):
return self.pos
@property
def can_collide(self):
return False
@property
def encoding(self):
return c.NO_POS.value[0]
return self._fill_value
@property
def name(self):
return "PlaceHolder"
class Tile(Object):
class GlobalPosition(BoundingMixin, EnvObject):
@property
def encoding(self):
if self._normalized:
return tuple(np.divide(self._bound_entity.pos, self._level_shape))
else:
return self.bound_entity.pos
def __init__(self, level_shape: (int, int), *args, normalized: bool = True, **kwargs):
super(GlobalPosition, self).__init__(*args, **kwargs)
self._level_shape = level_shape
self._normalized = normalized
class Floor(EnvObject):
@property
def encoding(self):
return c.FREE_CELL
@property
def guests_that_can_collide(self):
@ -197,8 +251,8 @@ class Tile(Object):
def pos(self):
return self._pos
def __init__(self, pos, **kwargs):
super(Tile, self).__init__(**kwargs)
def __init__(self, pos, *args, **kwargs):
super(Floor, self).__init__(*args, **kwargs)
self._guests = dict()
self._pos = tuple(pos)
@ -232,7 +286,16 @@ class Tile(Object):
return dict(name=self.name, x=int(self.x), y=int(self.y))
class Wall(Tile):
class Wall(Floor):
@property
def can_collide(self):
return True
@property
def encoding(self):
return c.OCCUPIED_CELL
pass
@ -247,7 +310,8 @@ class Door(Entity):
@property
def encoding(self):
return 1 if self.is_closed else 2
# This is important as it shadow is checked by occupation value
return c.CLOSED_DOOR_CELL if self.is_closed else c.OPEN_DOOR_CELL
@property
def str_state(self):
@ -307,11 +371,13 @@ class Door(Entity):
def _open(self):
self.connectivity.add_edges_from([(self.pos, x) for x in range(len(self.connectivity_subgroups))])
self._state = c.OPEN_DOOR
self._register.notify_change_to_value(self)
self.time_to_close = self.auto_close_interval
def _close(self):
self.connectivity.remove_node(self.pos)
self._state = c.CLOSED_DOOR
self._register.notify_change_to_value(self)
def is_linked(self, old_pos, new_pos):
try:
@ -323,20 +389,21 @@ class Door(Entity):
class Agent(MoveableEntity):
@property
def can_collide(self):
return True
def __init__(self, *args, **kwargs):
super(Agent, self).__init__(*args, **kwargs)
self.clear_temp_state()
# noinspection PyAttributeOutsideInit
def clear_temp_state(self):
# for attr in self.__dict__:
# for attr in cls.__dict__:
# if attr.startswith('temp'):
self.temp_collisions = []
self.temp_valid = None
self.temp_action = None
self.temp_light_map = None
self.step_result = None
def summarize_state(self, **kwargs):
state_dict = super().summarize_state(**kwargs)
state_dict.update(valid=bool(self.temp_valid), action=str(self.temp_action))
state_dict.update(valid=bool(self.step_result['action_valid']), action=str(self.step_result['action_name']))
return state_dict

View File

@ -1,18 +1,24 @@
import numbers
import random
from abc import ABC
from typing import List, Union, Dict
from typing import List, Union, Dict, Tuple
import numpy as np
import six
from environments.factory.base.objects import Entity, Tile, Agent, Door, Action, Wall, Object, PlaceHolder
from environments.factory.base.objects import Entity, Floor, Agent, Door, Action, Wall, PlaceHolder, GlobalPosition, \
Object, EnvObject
from environments.utility_classes import MovementProperties
from environments import helpers as h
from environments.helpers import Constants as c
##########################################################################
# ##################### Base Register Definition ####################### #
##########################################################################
class Register:
_accepted_objects = Entity
class ObjectRegister:
_accepted_objects = Object
@property
def name(self):
@ -48,6 +54,12 @@ class Register:
def items(self):
return self._register.items()
def _get_index(self, item):
try:
return next(i for i, v in enumerate(self._register.values()) if v == item)
except StopIteration:
return None
def __getitem__(self, item):
if isinstance(item, (int, np.int64, np.int32)):
if item < 0:
@ -62,42 +74,102 @@ class Register:
return None
def __repr__(self):
return f'{self.__class__.__name__}({self._register})'
return f'{self.__class__.__name__}[{self._register}]'
class ObjectRegister(Register):
class EnvObjectRegister(ObjectRegister):
hide_from_obs_builder = False
_accepted_objects = EnvObject
def __init__(self, level_shape: (int, int), *args, individual_slices=False, is_per_agent=False, **kwargs):
super(ObjectRegister, self).__init__(*args, **kwargs)
self.is_per_agent = is_per_agent
self.individual_slices = individual_slices
self._level_shape = level_shape
@property
def encodings(self):
return [x.encoding for x in self]
def __init__(self, obs_shape: (int, int), *args,
individual_slices: bool = False,
is_blocking_light: bool = False,
can_collide: bool = False,
can_be_shadowed: bool = True, **kwargs):
super(EnvObjectRegister, self).__init__(*args, **kwargs)
self._shape = obs_shape
self._array = None
self._individual_slices = individual_slices
self._lazy_eval_transforms = []
self.is_blocking_light = is_blocking_light
self.can_be_shadowed = can_be_shadowed
self.can_collide = can_collide
def register_item(self, other):
super(ObjectRegister, self).register_item(other)
def register_item(self, other: EnvObject):
super(EnvObjectRegister, self).register_item(other)
if self._array is None:
self._array = np.zeros((1, *self._level_shape))
self._array = np.zeros((1, *self._shape))
else:
if self.individual_slices:
self._array = np.concatenate((self._array, np.zeros((1, *self._array.shape[1:]))))
if self._individual_slices:
self._array = np.vstack((self._array, np.zeros((1, *self._shape))))
self.notify_change_to_value(other)
def as_array(self):
if self._lazy_eval_transforms:
idxs, values = zip(*self._lazy_eval_transforms)
# nuumpy put repects the ordering so that
np.put(self._array, idxs, values)
self._lazy_eval_transforms = []
return self._array
def summarize_states(self, n_steps=None):
return [val.summarize_state(n_steps=n_steps) for val in self.values()]
def notify_change_to_free(self, env_object: EnvObject):
self._array_change_notifyer(env_object, value=c.FREE_CELL)
class EntityObjectRegister(ObjectRegister, ABC):
def notify_change_to_value(self, env_object: EnvObject):
self._array_change_notifyer(env_object)
def as_array(self):
raise NotImplementedError
def _array_change_notifyer(self, env_object: EnvObject, value=None):
pos = self._get_index(env_object)
value = value if value is not None else env_object.encoding
self._lazy_eval_transforms.append((pos, value))
if self._individual_slices:
idx = (self._get_index(env_object) * np.prod(self._shape[1:]), value)
self._lazy_eval_transforms.append((idx, value))
else:
self._lazy_eval_transforms.append((pos, value))
def _refresh_arrays(self):
poss, values = zip(*[(idx, x.encoding) for idx,x in enumerate(self.values())])
for pos, value in zip(poss, values):
self._lazy_eval_transforms.append((pos, value))
def __delitem__(self, name):
idx, obj = next((i, obj) for i, obj in enumerate(self) if obj.name == name)
if self._individual_slices:
self._array = np.delete(self._array, idx, axis=0)
else:
self.notify_change_to_free(self._register[name])
# Dirty Hack to check if not beeing subclassed. In that case we need to refresh the array since positions
# in the observation array are result of enumeration. They can overide each other.
# Todo: Find a better solution
if not issubclass(self.__class__, EntityRegister) and issubclass(self.__class__, EnvObjectRegister):
self._refresh_arrays()
del self._register[name]
def delete_env_object(self, env_object: EnvObject):
del self[env_object.name]
def delete_env_object_by_name(self, name):
del self[name]
class EntityRegister(EnvObjectRegister, ABC):
_accepted_objects = Entity
@classmethod
def from_tiles(cls, tiles, *args, entity_kwargs=None, **kwargs):
# objects_name = cls._accepted_objects.__name__
register_obj = cls(*args, **kwargs)
entities = [cls._accepted_objects(tile, str_ident=i, **entity_kwargs if entity_kwargs is not None else {})
entities = [cls._accepted_objects(tile, register_obj, str_ident=i,
**entity_kwargs if entity_kwargs is not None else {})
for i, tile in enumerate(tiles)]
register_obj.register_additional_items(entities)
return register_obj
@ -115,86 +187,168 @@ class EntityObjectRegister(ObjectRegister, ABC):
def tiles(self):
return [entity.tile for entity in self]
def __init__(self, *args, is_blocking_light=False, is_observable=True, can_be_shadowed=True, **kwargs):
super(EntityObjectRegister, self).__init__(*args, **kwargs)
self.can_be_shadowed = can_be_shadowed
self.is_blocking_light = is_blocking_light
self.is_observable = is_observable
def __init__(self, level_shape, *args, **kwargs):
super(EntityRegister, self).__init__(level_shape, *args, **kwargs)
self._lazy_eval_transforms = []
def by_pos(self, pos):
if isinstance(pos, np.ndarray):
pos = tuple(pos)
def __delitem__(self, name):
idx, obj = next((i, obj) for i, obj in enumerate(self) if obj.name == name)
obj.tile.leave(obj)
super(EntityRegister, self).__delitem__(name)
def as_array(self):
if self._lazy_eval_transforms:
idxs, values = zip(*self._lazy_eval_transforms)
# numpy put repects the ordering so that
# Todo: Export the index building in a seperate function
np.put(self._array, [np.ravel_multi_index(idx, self._array.shape) for idx in idxs], values)
self._lazy_eval_transforms = []
return self._array
def _array_change_notifyer(self, entity, pos=None, value=None):
# Todo: Export the contruction in a seperate function
pos = pos if pos is not None else entity.pos
value = value if value is not None else entity.encoding
x, y = pos
if self._individual_slices:
idx = (self._get_index(entity), x, y)
else:
idx = (0, x, y)
self._lazy_eval_transforms.append((idx, value))
def by_pos(self, pos: Tuple[int, int]):
try:
return next(item for item in self.values() if item.pos == pos)
return next(item for item in self if item.pos == tuple(pos))
except StopIteration:
return None
class MovingEntityObjectRegister(EntityObjectRegister, ABC):
class BoundEnvObjRegister(EnvObjectRegister, ABC):
def __init__(self, entity_to_be_bound, *args, **kwargs):
super().__init__(*args, **kwargs)
self._bound_entity = entity_to_be_bound
def belongs_to_entity(self, entity):
return self._bound_entity == entity
def by_entity(self, entity):
try:
return next((x for x in self if x.belongs_to_entity(entity)))
except StopIteration:
return None
def idx_by_entity(self, entity):
try:
return next((idx for idx, x in enumerate(self) if x.belongs_to_entity(entity)))
except StopIteration:
return None
def as_array_by_entity(self, entity):
return self._array[self.idx_by_entity(entity)]
class MovingEntityObjectRegister(EntityRegister, ABC):
def __init__(self, *args, **kwargs):
super(MovingEntityObjectRegister, self).__init__(*args, **kwargs)
def by_pos(self, pos):
if isinstance(pos, np.ndarray):
pos = tuple(pos)
def notify_change_to_value(self, entity):
super(MovingEntityObjectRegister, self).notify_change_to_value(entity)
if entity.last_pos != c.NO_POS:
try:
return next(x for x in self if x.pos == pos)
self._array_change_notifyer(entity, entity.last_pos, value=c.FREE_CELL)
except AttributeError:
pass
##########################################################################
# ################# Objects and Entity Registers ####################### #
##########################################################################
class GlobalPositions(EnvObjectRegister):
_accepted_objects = GlobalPosition
def __init__(self, *args, **kwargs):
super(GlobalPositions, self).__init__(*args, is_per_agent=True, individual_slices=True, is_blocking_light = False,
can_be_shadowed = False, can_collide = False, **kwargs)
def as_array(self):
# FIXME DEBUG!!! make this lazy?
return np.stack([gp.as_array() for inv_idx, gp in enumerate(self)])
def as_array_by_entity(self, entity):
# FIXME DEBUG!!! make this lazy?
return np.stack([gp.as_array() for inv_idx, gp in enumerate(self)])
def spawn_global_position_objects(self, agents):
# Todo, change to 'from xy'-form
global_positions = [self._accepted_objects(self._shape, agent, self)
for _, agent in enumerate(agents)]
# noinspection PyTypeChecker
self.register_additional_items(global_positions)
def summarize_states(self, n_steps=None):
return {}
def idx_by_entity(self, entity):
try:
return next((idx for idx, inv in enumerate(self) if inv.belongs_to_entity(entity)))
except StopIteration:
return None
def __delitem__(self, name):
idx = next(i for i, entity in enumerate(self) if entity.name == name)
del self._register[name]
if self.individual_slices:
self._array = np.delete(self._array, idx, axis=0)
def delete_entity(self, item):
self.delete_entity_by_name(item.name)
def delete_entity_by_name(self, name):
del self[name]
def by_entity(self, entity):
try:
return next((inv for inv in self if inv.belongs_to_entity(entity)))
except StopIteration:
return None
class PlaceHolders(MovingEntityObjectRegister):
class PlaceHolders(EnvObjectRegister):
_accepted_objects = PlaceHolder
def __init__(self, *args, fill_value: Union[str, int] = 0, **kwargs):
def __init__(self, *args, **kwargs):
assert 'individual_slices' not in kwargs, 'Keyword - "individual_slices": "True" and must not be altered'
kwargs.update(individual_slices=False)
super().__init__(*args, **kwargs)
self.fill_value = fill_value
@classmethod
def from_values(cls, values: Union[str, numbers.Number, List[Union[str, numbers.Number]]],
*args, object_kwargs=None, **kwargs):
# objects_name = cls._accepted_objects.__name__
if isinstance(values, (str, numbers.Number)):
values = [values]
register_obj = cls(*args, **kwargs)
objects = [cls._accepted_objects(register_obj, str_ident=i, fill_value=value,
**object_kwargs if object_kwargs is not None else {})
for i, value in enumerate(values)]
register_obj.register_additional_items(objects)
return register_obj
# noinspection DuplicatedCode
def as_array(self):
if isinstance(self.fill_value, numbers.Number):
self._array[:] = self.fill_value
elif isinstance(self.fill_value, str):
if self.fill_value.lower() in ['normal', 'n']:
self._array = np.random.normal(size=self._array.shape)
for idx, placeholder in enumerate(self):
if isinstance(placeholder.encoding, numbers.Number):
self._array[idx][:] = placeholder.fill_value
elif isinstance(placeholder.fill_value, str):
if placeholder.fill_value.lower() in ['normal', 'n']:
self._array[:] = np.random.normal(size=self._array.shape)
else:
raise ValueError('Choose one of: ["normal", "N"]')
else:
raise TypeError('Objects of type "str" or "number" is required here.')
if self.individual_slices:
return self._array
else:
return self._array[None, 0]
class Entities(Register):
_accepted_objects = EntityObjectRegister
class Entities(ObjectRegister):
_accepted_objects = EntityRegister
@property
def observable_arrays(self):
# FIXME: Find a better name
return {key: val.as_array() for key, val in self.items() if val.is_observable}
@property
def obs_arrays(self):
# FIXME: Find a better name
return {key: val.as_array() for key, val in self.items() if val.is_observable and not val.hide_from_obs_builder}
def arrays(self):
return {key: val.as_array() for key, val in self.items()}
@property
def names(self):
@ -220,34 +374,30 @@ class Entities(Register):
return found_entities
class WallTiles(EntityObjectRegister):
class Walls(EntityRegister):
_accepted_objects = Wall
_light_blocking = True
def as_array(self):
if not np.any(self._array):
# Which is Faster?
# indices = [x.pos for x in cls]
# np.put(cls._array, [np.ravel_multi_index((0, *x), cls._array.shape) for x in indices], cls.encodings)
x, y = zip(*[x.pos for x in self])
self._array[0, x, y] = self.encoding
self._array[0, x, y] = self._value
return self._array
def __init__(self, *args, **kwargs):
super(WallTiles, self).__init__(*args, individual_slices=False,
is_blocking_light=self._light_blocking, **kwargs)
@property
def encoding(self):
return c.OCCUPIED_CELL.value
@property
def array(self):
return self._array
def __init__(self, *args, is_blocking_light=True, **kwargs):
super(Walls, self).__init__(*args, individual_slices=False,
can_collide=True,
is_blocking_light=is_blocking_light, **kwargs)
self._value = c.OCCUPIED_CELL
@classmethod
def from_argwhere_coordinates(cls, argwhere_coordinates, *args, **kwargs):
tiles = cls(*args, **kwargs)
# noinspection PyTypeChecker
tiles.register_additional_items(
[cls._accepted_objects(pos, is_blocking_light=cls._light_blocking)
[cls._accepted_objects(pos, tiles)
for pos in argwhere_coordinates]
)
return tiles
@ -258,22 +408,17 @@ class WallTiles(EntityObjectRegister):
def summarize_states(self, n_steps=None):
if n_steps == h.STEPS_START:
return super(WallTiles, self).summarize_states(n_steps=n_steps)
return super(Walls, self).summarize_states(n_steps=n_steps)
else:
return {}
class FloorTiles(WallTiles):
class Floors(Walls):
_accepted_objects = Floor
_accepted_objects = Tile
_light_blocking = False
def __init__(self, *args, **kwargs):
super(FloorTiles, self).__init__(*args, is_observable=False, **kwargs)
@property
def encoding(self):
return c.FREE_CELL.value
def __init__(self, *args, is_blocking_light=False, **kwargs):
super(Floors, self).__init__(*args, is_blocking_light=is_blocking_light, **kwargs)
self._value = c.FREE_CELL
@property
def occupied_tiles(self):
@ -282,7 +427,7 @@ class FloorTiles(WallTiles):
return tiles
@property
def empty_tiles(self) -> List[Tile]:
def empty_tiles(self) -> List[Floor]:
tiles = [tile for tile in self if tile.is_empty()]
random.shuffle(tiles)
return tiles
@ -297,26 +442,10 @@ class FloorTiles(WallTiles):
class Agents(MovingEntityObjectRegister):
_accepted_objects = Agent
def __init__(self, *args, hide_from_obs_builder=False, **kwargs):
super().__init__(*args, **kwargs)
self.hide_from_obs_builder = hide_from_obs_builder
# noinspection DuplicatedCode
def as_array(self):
self._array[:] = c.FREE_CELL.value
# noinspection PyTupleAssignmentBalance
for z, x, y, v in zip(range(len(self)), *zip(*[x.pos for x in self]), [x.encoding for x in self]):
if self.individual_slices:
self._array[z, x, y] += v
else:
self._array[0, x, y] += v
if self.individual_slices:
return self._array
else:
return self._array.sum(axis=0, keepdims=True)
def __init__(self, *args, **kwargs):
super().__init__(*args, can_collide=True, **kwargs)
@property
def positions(self):
@ -329,16 +458,12 @@ class Agents(MovingEntityObjectRegister):
self._register[agent.name] = agent
class Doors(EntityObjectRegister):
class Doors(EntityRegister):
def __init__(self, *args, **kwargs):
super(Doors, self).__init__(*args, is_blocking_light=True, **kwargs)
def as_array(self):
self._array[:] = 0
for door in self:
self._array[0, door.x, door.y] = door.encoding
return self._array
def __init__(self, *args, have_area: bool = False, **kwargs):
self.have_area = have_area
self._area_marked = False
super(Doors, self).__init__(*args, is_blocking_light=True, can_collide=True, **kwargs)
_accepted_objects = Door
@ -352,9 +477,20 @@ class Doors(EntityObjectRegister):
for door in self:
door.tick()
def as_array(self):
if self.have_area and not self._area_marked:
for door in self:
for pos in door.access_area:
if self._individual_slices:
pass
else:
pos = (0, *pos)
self._lazy_eval_transforms.append((pos, c.ACCESS_DOOR_CELL))
self._area_marked = True
return super(Doors, self).as_array()
class Actions(Register):
class Actions(ObjectRegister):
_accepted_objects = Action
@property
@ -369,27 +505,28 @@ class Actions(Register):
self.can_use_doors = can_use_doors
super(Actions, self).__init__()
# Move this to Baseclass, Env init?
if self.allow_square_movement:
self.register_additional_items([self._accepted_objects(enum_ident=direction)
for direction in h.MovingAction.square()])
self.register_additional_items([self._accepted_objects(str_ident=direction)
for direction in h.EnvActions.square_move()])
if self.allow_diagonal_movement:
self.register_additional_items([self._accepted_objects(enum_ident=direction)
for direction in h.MovingAction.diagonal()])
self.register_additional_items([self._accepted_objects(str_ident=direction)
for direction in h.EnvActions.diagonal_move()])
self._movement_actions = self._register.copy()
if self.can_use_doors:
self.register_additional_items([self._accepted_objects(enum_ident=h.EnvActions.USE_DOOR)])
self.register_additional_items([self._accepted_objects(str_ident=h.EnvActions.USE_DOOR)])
if self.allow_no_op:
self.register_additional_items([self._accepted_objects(enum_ident=h.EnvActions.NOOP)])
self.register_additional_items([self._accepted_objects(str_ident=h.EnvActions.NOOP)])
def is_moving_action(self, action: Union[int]):
return action in self.movement_actions.values()
class Zones(Register):
class Zones(ObjectRegister):
@property
def accounting_zones(self):
return [self[idx] for idx, name in self.items() if name != c.DANGER_ZONE.value]
return [self[idx] for idx, name in self.items() if name != c.DANGER_ZONE]
def __init__(self, parsed_level):
raise NotImplementedError('This needs a Rework')
@ -398,9 +535,9 @@ class Zones(Register):
self._accounting_zones = list()
self._danger_zones = list()
for symbol in np.unique(parsed_level):
if symbol == c.WALL.value:
if symbol == c.WALL:
continue
elif symbol == c.DANGER_ZONE.value:
elif symbol == c.DANGER_ZONE:
self + symbol
slices.append(h.one_hot_level(parsed_level, symbol))
self._danger_zones.append(symbol)

View File

@ -2,6 +2,7 @@ import numpy as np
from environments.helpers import Constants as c
# Multipliers for transforming coordinates to other octants:
mult_array = np.asarray([
[1, 0, 0, -1, -1, 0, 0, 1],
[0, 1, -1, 0, 0, -1, 1, 0],
@ -11,19 +12,17 @@ mult_array = np.asarray([
class Map(object):
# Multipliers for transforming coordinates to other octants:
def __init__(self, map_array: np.ndarray, diamond_slope: float = 0.9):
def __init__(self, map_array: np.typing.ArrayLike, diamond_slope: float = 0.9):
self.data = map_array
self.width, self.height = map_array.shape
self.light = np.full_like(self.data, c.FREE_CELL.value)
self.flag = c.FREE_CELL.value
self.light = np.full_like(self.data, c.FREE_CELL)
self.flag = c.FREE_CELL
self.d_slope = diamond_slope
def blocked(self, x, y):
return (x < 0 or y < 0
or x >= self.width or y >= self.height
or self.data[x, y] == c.OCCUPIED_CELL.value)
or self.data[x, y] == c.OCCUPIED_CELL)
def lit(self, x, y):
return self.light[x, y] == self.flag
@ -33,7 +32,7 @@ class Map(object):
self.light[x, y] = self.flag
def _cast_light(self, cx, cy, row, start, end, radius, xx, xy, yx, yy, id):
"Recursive lightcasting function"
"""Recursive lightcasting function"""
if start < end:
return
radius_squared = radius*radius
@ -46,14 +45,14 @@ class Map(object):
# Translate the dx, dy coordinates into map coordinates:
X, Y = cx + dx * xx + dy * xy, cy + dx * yx + dy * yy
# l_slope and r_slope store the slopes of the left and right
# extremities of the square we're considering:
# extremities of the square_move we're considering:
l_slope, r_slope = (dx-self.d_slope)/(dy+self.d_slope), (dx+self.d_slope)/(dy-self.d_slope)
if start < r_slope:
continue
elif end > l_slope:
break
else:
# Our light beam is touching this square; light it:
# Our light beam is touching this square_move; light it:
if dx*dx + dy*dy < radius_squared:
self.set_lit(X, Y)
if blocked:
@ -66,12 +65,12 @@ class Map(object):
start = new_start
else:
if self.blocked(X, Y) and j < radius:
# This is a blocking square, start a child scan:
# This is a blocking square_move, start a child scan:
blocked = True
self._cast_light(cx, cy, j+1, start, l_slope,
radius, xx, xy, yx, yy, id+1)
new_start = r_slope
# Row is scanned; do next row unless last square was blocked:
# Row is scanned; do next row unless last square_move was blocked:
if blocked:
break

View File

@ -1,6 +1,7 @@
import random
from environments.factory.factory_battery import BatteryFactory, BatteryProperties
from environments.factory.factory_dest import DestFactory
from environments.factory.factory_dirt import DirtFactory, DirtProperties
from environments.factory.factory_item import ItemFactory
@ -17,6 +18,12 @@ class DirtBatteryFactory(DirtFactory, BatteryFactory):
super().__init__(*args, **kwargs)
# noinspection PyAbstractClass
class DirtDestItemFactory(ItemFactory, DirtFactory, DestFactory):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as ARO, ObservationProperties

View File

@ -1,18 +1,33 @@
from typing import Union, NamedTuple
from typing import Union, NamedTuple, Dict, List
import numpy as np
from environments.factory.base.base_factory import BaseFactory
from environments.factory.base.objects import Agent, Action, Entity
from environments.factory.base.registers import EntityObjectRegister, ObjectRegister
from environments.factory.base.objects import Agent, Action, Entity, EnvObject, BoundingMixin
from environments.factory.base.registers import EntityRegister, EnvObjectRegister
from environments.factory.base.renderer import RenderEntity
from environments.helpers import Constants as c
from environments.helpers import Constants as BaseConstants
from environments.helpers import EnvActions as BaseActions
from environments import helpers as h
CHARGE_ACTION = h.EnvActions.CHARGE
ITEM_DROP_OFF = 1
class Constants(BaseConstants):
# Battery Env
CHARGE_PODS = 'Charge_Pod'
BATTERIES = 'BATTERIES'
BATTERY_DISCHARGED = 'DISCHARGED'
CHARGE_POD = 1
class Actions(BaseActions):
CHARGE = 'do_charge_action'
class RewardsBtry(NamedTuple):
CHARGE_VALID: float = 0.1
CHARGE_FAIL: float = -0.1
BATTERY_DISCHARGED: float = -1.0
class BatteryProperties(NamedTuple):
@ -24,44 +39,24 @@ class BatteryProperties(NamedTuple):
multi_charge: bool = False
class Battery(object):
c = Constants
a = Actions
class Battery(BoundingMixin, EnvObject):
@property
def is_discharged(self):
return self.charge_level == 0
@property
def is_blocking_light(self):
return False
@property
def can_collide(self):
return False
@property
def name(self):
return f'{self.__class__.__name__}({self.agent.name})'
def __init__(self, pomdp_r: int, level_shape: (int, int), agent: Agent, initial_charge_level: float):
super().__init__()
self.agent = agent
self._pomdp_r = pomdp_r
self._level_shape = level_shape
if self._pomdp_r:
self._array = np.zeros((1, pomdp_r * 2 + 1, pomdp_r * 2 + 1))
else:
self._array = np.zeros((1, *self._level_shape))
def __init__(self, initial_charge_level: float, *args, **kwargs):
super(Battery, self).__init__(*args, **kwargs)
self.charge_level = initial_charge_level
def as_array(self):
self._array[:] = c.FREE_CELL.value
self._array[0, 0] = self.charge_level
return self._array
def encoding(self):
return self.charge_level
def __repr__(self):
return f'{self.__class__.__name__}[{self.agent.name}]({self.charge_level})'
def charge(self, amount) -> c:
def do_charge_action(self, amount):
if self.charge_level < 1:
# noinspection PyTypeChecker
self.charge_level = min(1, amount + self.charge_level)
@ -73,69 +68,57 @@ class Battery(object):
if self.charge_level != 0:
# noinspection PyTypeChecker
self.charge_level = max(0, amount + self.charge_level)
self._register.notify_change_to_value(self)
return c.VALID
else:
return c.NOT_VALID
def belongs_to_entity(self, entity):
return self.agent == entity
def summarize_state(self, **kwargs):
def summarize_state(self, **_):
attr_dict = {key: str(val) for key, val in self.__dict__.items() if not key.startswith('_') and key != 'data'}
attr_dict.update(dict(name=self.name))
return attr_dict
class BatteriesRegister(ObjectRegister):
class BatteriesRegister(EnvObjectRegister):
_accepted_objects = Battery
is_blocking_light = False
can_be_shadowed = False
hide_from_obs_builder = True
def __init__(self, *args, **kwargs):
super(BatteriesRegister, self).__init__(*args, is_per_agent=True, individual_slices=True, **kwargs)
super(BatteriesRegister, self).__init__(*args, individual_slices=True,
is_blocking_light=False, can_be_shadowed=False, **kwargs)
self.is_observable = True
def as_array(self):
# self._array[:] = c.FREE_CELL.value
for inv_idx, battery in enumerate(self):
self._array[inv_idx] = battery.as_array()
return self._array
def spawn_batteries(self, agents, pomdp_r, initial_charge_level):
inventories = [self._accepted_objects(pomdp_r, self._level_shape, agent,
initial_charge_level)
for _, agent in enumerate(agents)]
self.register_additional_items(inventories)
def idx_by_entity(self, entity):
try:
return next((idx for idx, bat in enumerate(self) if bat.belongs_to_entity(entity)))
except StopIteration:
return None
def by_entity(self, entity):
try:
return next((bat for bat in self if bat.belongs_to_entity(entity)))
except StopIteration:
return None
def spawn_batteries(self, agents, initial_charge_level):
batteries = [self._accepted_objects(initial_charge_level, agent, self) for _, agent in enumerate(agents)]
self.register_additional_items(batteries)
def summarize_states(self, n_steps=None):
# as dict with additional nesting
# return dict(items=super(Inventories, self).summarize_states())
# return dict(items=super(Inventories, cls).summarize_states())
return super(BatteriesRegister, self).summarize_states(n_steps=n_steps)
# Todo Move this to Mixin!
def by_entity(self, entity):
try:
return next((x for x in self if x.belongs_to_entity(entity)))
except StopIteration:
return None
def idx_by_entity(self, entity):
try:
return next((idx for idx, x in enumerate(self) if x.belongs_to_entity(entity)))
except StopIteration:
return None
def as_array_by_entity(self, entity):
return self._array[self.idx_by_entity(entity)]
class ChargePod(Entity):
@property
def can_collide(self):
return False
@property
def encoding(self):
return ITEM_DROP_OFF
return c.CHARGE_POD
def __init__(self, *args, charge_rate: float = 0.4,
multi_charge: bool = False, **kwargs):
@ -146,10 +129,10 @@ class ChargePod(Entity):
def charge_battery(self, battery: Battery):
if battery.charge_level == 1.0:
return c.NOT_VALID
if sum(guest for guest in self.tile.guests if c.AGENT.name in guest.name) > 1:
if sum(guest for guest in self.tile.guests if 'agent' in guest.name.lower()) > 1:
return c.NOT_VALID
battery.charge(self.charge_rate)
return c.VALID
valid = battery.do_charge_action(self.charge_rate)
return valid
def summarize_state(self, n_steps=None) -> dict:
if n_steps == h.STEPS_START:
@ -157,32 +140,39 @@ class ChargePod(Entity):
return summary
class ChargePods(EntityObjectRegister):
class ChargePods(EntityRegister):
_accepted_objects = ChargePod
def as_array(self):
self._array[:] = c.FREE_CELL.value
for item in self:
if item.pos != c.NO_POS.value:
self._array[0, item.x, item.y] = item.encoding
return self._array
def __repr__(self):
super(ChargePods, self).__repr__()
class BatteryFactory(BaseFactory):
def __init__(self, *args, btry_prop=BatteryProperties(), **kwargs):
def __init__(self, *args, btry_prop=BatteryProperties(), rewards_dest: RewardsBtry = RewardsBtry(),
**kwargs):
if isinstance(btry_prop, dict):
btry_prop = BatteryProperties(**btry_prop)
if isinstance(rewards_dest, dict):
rewards_dest = BatteryProperties(**rewards_dest)
self.btry_prop = btry_prop
self.rewards_dest = rewards_dest
super().__init__(*args, **kwargs)
def per_agent_raw_observations_hook(self, agent) -> Dict[str, np.typing.ArrayLike]:
additional_raw_observations = super().per_agent_raw_observations_hook(agent)
additional_raw_observations.update({c.BATTERIES: self[c.BATTERIES].as_array_by_entity(agent)})
return additional_raw_observations
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
additional_observations = super().observations_hook()
additional_observations.update({c.CHARGE_PODS: self[c.CHARGE_PODS].as_array()})
return additional_observations
@property
def additional_entities(self):
super_entities = super().additional_entities
def entities_hook(self):
super_entities = super().entities_hook
empty_tiles = self[c.FLOOR].empty_tiles[:self.btry_prop.charge_locations]
charge_pods = ChargePods.from_tiles(
@ -193,12 +183,12 @@ class BatteryFactory(BaseFactory):
batteries = BatteriesRegister(self._level_shape if not self._pomdp_r else ((self.pomdp_diameter,) * 2),
)
batteries.spawn_batteries(self[c.AGENT], self._pomdp_r, self.btry_prop.initial_charge)
super_entities.update({c.BATTERIES: batteries, c.CHARGE_POD: charge_pods})
batteries.spawn_batteries(self[c.AGENT], self.btry_prop.initial_charge)
super_entities.update({c.BATTERIES: batteries, c.CHARGE_PODS: charge_pods})
return super_entities
def do_additional_step(self) -> dict:
info_dict = super(BatteryFactory, self).do_additional_step()
def step_hook(self) -> (List[dict], dict):
super_reward_info = super(BatteryFactory, self).step_hook()
# Decharge
batteries = self[c.BATTERIES]
@ -211,65 +201,73 @@ class BatteryFactory(BaseFactory):
batteries.by_entity(agent).decharge(energy_consumption)
return info_dict
return super_reward_info
def do_charge(self, agent) -> c:
if charge_pod := self[c.CHARGE_POD].by_pos(agent.pos):
return charge_pod.charge_battery(self[c.BATTERIES].by_entity(agent))
def do_charge_action(self, agent) -> (dict, dict):
if charge_pod := self[c.CHARGE_PODS].by_pos(agent.pos):
valid = charge_pod.charge_battery(self[c.BATTERIES].by_entity(agent))
if valid:
info_dict = {f'{agent.name}_{a.CHARGE}_VALID': 1}
self.print(f'{agent.name} just charged batteries at {charge_pod.name}.')
else:
return c.NOT_VALID
info_dict = {f'{agent.name}_{a.CHARGE}_FAIL': 1}
self.print(f'{agent.name} failed to charged batteries at {charge_pod.name}.')
else:
valid = c.NOT_VALID
info_dict = {f'{agent.name}_{a.CHARGE}_FAIL': 1}
# info_dict = {f'{agent.name}_no_charger': 1}
self.print(f'{agent.name} failed to charged batteries at {agent.pos}.')
reward = dict(value=self.rewards_dest.CHARGE_VALID if valid else self.rewards_dest.CHARGE_FAIL,
reason=a.CHARGE, info=info_dict)
return valid, reward
def do_additional_actions(self, agent: Agent, action: Action) -> Union[None, c]:
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == CHARGE_ACTION:
valid = self.do_charge(agent)
return valid
def do_additional_actions(self, agent: Agent, action: Action) -> (bool, dict):
action_result = super().do_additional_actions(agent, action)
if action_result is None:
if action == a.CHARGE:
action_result = self.do_charge_action(agent)
return action_result
else:
return None
else:
return valid
return action_result
pass
def do_additional_reset(self) -> None:
def reset_hook(self) -> None:
# There is Nothing to reset.
pass
def check_additional_done(self) -> bool:
super_done = super(BatteryFactory, self).check_additional_done()
def check_additional_done(self) -> (bool, dict):
super_done, super_dict = super(BatteryFactory, self).check_additional_done()
if super_done:
return super_done
return super_done, super_dict
else:
return self.btry_prop.done_when_discharged and any(battery.is_discharged for battery in self[c.BATTERIES])
if self.btry_prop.done_when_discharged:
if btry_done := any(battery.is_discharged for battery in self[c.BATTERIES]):
super_dict.update(DISCHARGE_DONE=1)
return btry_done, super_dict
else:
pass
else:
pass
pass
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
reward, info_dict = super(BatteryFactory, self).calculate_additional_reward(agent)
if h.EnvActions.CHARGE == agent.temp_action:
if agent.temp_valid:
charge_pod = self[c.CHARGE_POD].by_pos(agent.pos)
info_dict.update({f'{agent.name}_charge': 1})
info_dict.update(agent_charged=1)
self.print(f'{agent.name} just charged batteries at {charge_pod.pos}.')
reward += 0.1
else:
self[c.DROP_OFF].by_pos(agent.pos)
info_dict.update({f'{agent.name}_failed_charge': 1})
info_dict.update(failed_charge=1)
self.print(f'{agent.name} just tried to charge at {agent.pos}, but failed.')
reward -= 0.1
def per_agent_reward_hook(self, agent: Agent) -> Dict[str, dict]:
reward_event_dict = super(BatteryFactory, self).per_agent_reward_hook(agent)
if self[c.BATTERIES].by_entity(agent).is_discharged:
info_dict.update({f'{agent.name}_discharged': 1})
reward -= 1
self.print(f'{agent.name} Battery is discharged!')
info_dict = {f'{agent.name}_{c.BATTERY_DISCHARGED}': 1}
reward_event_dict.update({c.BATTERY_DISCHARGED: {'reward': self.rewards_dest.BATTERY_DISCHARGED,
'info': info_dict}}
)
else:
info_dict.update({f'{agent.name}_battery_level': self[c.BATTERIES].by_entity(agent).charge_level})
return reward, info_dict
# All Fine
pass
return reward_event_dict
def render_additional_assets(self):
def render_assets_hook(self):
# noinspection PyUnresolvedReferences
additional_assets = super().render_additional_assets()
charge_pods = [RenderEntity(c.CHARGE_POD.value, charge_pod.tile.pos) for charge_pod in self[c.CHARGE_POD]]
additional_assets = super().render_assets_hook()
charge_pods = [RenderEntity(c.CHARGE_PODS, charge_pod.tile.pos) for charge_pod in self[c.CHARGE_PODS]]
additional_assets.extend(charge_pods)
return additional_assets

View File

@ -6,16 +6,31 @@ import numpy as np
import random
from environments.factory.base.base_factory import BaseFactory
from environments.helpers import Constants as c
from environments import helpers as h
from environments.factory.base.objects import Agent, Entity, Action, Tile
from environments.factory.base.registers import Entities, MovingEntityObjectRegister
from environments.helpers import Constants as BaseConstants
from environments.helpers import EnvActions as BaseActions
from environments.factory.base.objects import Agent, Entity, Action
from environments.factory.base.registers import Entities, EntityRegister
from environments.factory.base.renderer import RenderEntity
class Constants(BaseConstants):
# Destination Env
DEST = 'Destination'
DESTINATION = 1
DESTINATION_DONE = 0.5
DEST_REACHED = 'ReachedDestination'
class Actions(BaseActions):
WAIT_ON_DEST = 'WAIT'
class RewardsDest(NamedTuple):
WAIT_VALID: float = 0.1
WAIT_FAIL: float = -0.1
DEST_REACHED: float = 5.0
class Destination(Entity):
@ -28,20 +43,16 @@ class Destination(Entity):
def currently_dwelling_names(self):
return self._per_agent_times.keys()
@property
def can_collide(self):
return False
@property
def encoding(self):
return DESTINATION
return c.DESTINATION
def __init__(self, *args, dwell_time: int = 0, **kwargs):
super(Destination, self).__init__(*args, **kwargs)
self.dwell_time = dwell_time
self._per_agent_times = defaultdict(lambda: dwell_time)
def wait(self, agent: Agent):
def do_wait_action(self, agent: Agent):
self._per_agent_times[agent.name] -= 1
return c.VALID
@ -50,7 +61,7 @@ class Destination(Entity):
@property
def is_considered_reached(self):
agent_at_position = any(c.AGENT.name.lower() in x.name.lower() for x in self.tile.guests_that_can_collide)
agent_at_position = any(c.AGENT.lower() in x.name.lower() for x in self.tile.guests_that_can_collide)
return (agent_at_position and not self.dwell_time) or any(x == 0 for x in self._per_agent_times.values())
def agent_is_dwelling(self, agent: Agent):
@ -62,15 +73,22 @@ class Destination(Entity):
return state_summary
class Destinations(MovingEntityObjectRegister):
class Destinations(EntityRegister):
_accepted_objects = Destination
_light_blocking = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_blocking_light = False
self.can_be_shadowed = False
def as_array(self):
self._array[:] = c.FREE_CELL.value
self._array[:] = c.FREE_CELL
# ToDo: Switch to new Style Array Put
# indices = list(zip(range(len(cls)), *zip(*[x.pos for x in cls])))
# np.put(cls._array, [np.ravel_multi_index(x, cls._array.shape) for x in indices], cls.encodings)
for item in self:
if item.pos != c.NO_POS.value:
if item.pos != c.NO_POS:
self._array[0, item.x, item.y] = item.encoding
return self._array
@ -80,59 +98,67 @@ class Destinations(MovingEntityObjectRegister):
class ReachedDestinations(Destinations):
_accepted_objects = Destination
_light_blocking = False
def __init__(self, *args, **kwargs):
super(ReachedDestinations, self).__init__(*args, is_observable=False, **kwargs)
super(ReachedDestinations, self).__init__(*args, **kwargs)
self.can_be_shadowed = False
self.is_blocking_light = False
def summarize_states(self, n_steps=None):
return {}
class DestSpawnMode(object):
class DestModeOptions(object):
DONE = 'DONE'
GROUPED = 'GROUPED'
PER_DEST = 'PER_DEST'
class DestinationProperties(NamedTuple):
class DestProperties(NamedTuple):
n_dests: int = 1 # How many destinations are there
dwell_time: int = 0 # How long does the agent need to "wait" on a destination
spawn_frequency: int = 0
spawn_in_other_zone: bool = True #
spawn_mode: str = DestSpawnMode.DONE
spawn_mode: str = DestModeOptions.DONE
assert dwell_time >= 0, 'dwell_time cannot be < 0!'
assert spawn_frequency >= 0, 'spawn_frequency cannot be < 0!'
assert n_dests >= 0, 'n_destinations cannot be < 0!'
assert (spawn_mode == DestSpawnMode.DONE) != bool(spawn_frequency)
assert (spawn_mode == DestModeOptions.DONE) != bool(spawn_frequency)
c = Constants
a = Actions
# noinspection PyAttributeOutsideInit, PyAbstractClass
class DestinationFactory(BaseFactory):
class DestFactory(BaseFactory):
# noinspection PyMissingConstructor
def __init__(self, *args, dest_prop: DestinationProperties = DestinationProperties(),
def __init__(self, *args, dest_prop: DestProperties = DestProperties(), rewards_dest: RewardsDest = RewardsDest(),
env_seed=time.time_ns(), **kwargs):
if isinstance(dest_prop, dict):
dest_prop = DestinationProperties(**dest_prop)
dest_prop = DestProperties(**dest_prop)
if isinstance(rewards_dest, dict):
rewards_dest = RewardsDest(**rewards_dest)
self.dest_prop = dest_prop
self.rewards_dest = rewards_dest
kwargs.update(env_seed=env_seed)
self._dest_rng = np.random.default_rng(env_seed)
super().__init__(*args, **kwargs)
@property
def additional_actions(self) -> Union[Action, List[Action]]:
def actions_hook(self) -> Union[Action, List[Action]]:
# noinspection PyUnresolvedReferences
super_actions = super().additional_actions
super_actions = super().actions_hook
if self.dest_prop.dwell_time:
super_actions.append(Action(enum_ident=h.EnvActions.WAIT_ON_DEST))
super_actions.append(Action(enum_ident=a.WAIT_ON_DEST))
return super_actions
@property
def additional_entities(self) -> Dict[(Enum, Entities)]:
def entities_hook(self) -> Dict[(Enum, Entities)]:
# noinspection PyUnresolvedReferences
super_entities = super().additional_entities
super_entities = super().entities_hook
empty_tiles = self[c.FLOOR].empty_tiles[:self.dest_prop.n_dests]
destinations = Destinations.from_tiles(
@ -142,35 +168,37 @@ class DestinationFactory(BaseFactory):
)
reached_destinations = ReachedDestinations(level_shape=self._level_shape)
super_entities.update({c.DESTINATION: destinations, c.REACHEDDESTINATION: reached_destinations})
super_entities.update({c.DEST: destinations, c.DEST_REACHED: reached_destinations})
return super_entities
def additional_per_agent_obs_build(self, agent) -> List[np.ndarray]:
additional_per_agent_obs_build = super().additional_per_agent_obs_build(agent)
return additional_per_agent_obs_build
def wait(self, agent: Agent):
if destiantion := self[c.DESTINATION].by_pos(agent.pos):
valid = destiantion.wait(agent)
return valid
def do_wait_action(self, agent: Agent) -> (dict, dict):
if destination := self[c.DEST].by_pos(agent.pos):
valid = destination.do_wait_action(agent)
self.print(f'{agent.name} just waited at {agent.pos}')
info_dict = {f'{agent.name}_{a.WAIT_ON_DEST}_VALID': 1}
else:
return c.NOT_VALID
valid = c.NOT_VALID
self.print(f'{agent.name} just tried to do_wait_action do_wait_action at {agent.pos} but failed')
info_dict = {f'{agent.name}_{a.WAIT_ON_DEST}_FAIL': 1}
reward = dict(value=self.rewards_dest.WAIT_VALID if valid else self.rewards_dest.WAIT_FAIL,
reason=a.WAIT_ON_DEST, info=info_dict)
return valid, reward
def do_additional_actions(self, agent: Agent, action: Action) -> Union[None, c]:
def do_additional_actions(self, agent: Agent, action: Action) -> (dict, dict):
# noinspection PyUnresolvedReferences
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == h.EnvActions.WAIT_ON_DEST:
valid = self.wait(agent)
return valid
super_action_result = super().do_additional_actions(agent, action)
if super_action_result is None:
if action == a.WAIT_ON_DEST:
action_result = self.do_wait_action(agent)
return action_result
else:
return None
else:
return valid
return super_action_result
def do_additional_reset(self) -> None:
def reset_hook(self) -> None:
# noinspection PyUnresolvedReferences
super().do_additional_reset()
super().reset_hook()
self._dest_spawn_timer = dict()
def trigger_destination_spawn(self):
@ -178,15 +206,15 @@ class DestinationFactory(BaseFactory):
if val == self.dest_prop.spawn_frequency]
if destinations_to_spawn:
n_dest_to_spawn = len(destinations_to_spawn)
if self.dest_prop.spawn_mode != DestSpawnMode.GROUPED:
destinations = [Destination(tile) for tile in self[c.FLOOR].empty_tiles[:n_dest_to_spawn]]
self[c.DESTINATION].register_additional_items(destinations)
if self.dest_prop.spawn_mode != DestModeOptions.GROUPED:
destinations = [Destination(tile, c.DEST) for tile in self[c.FLOOR].empty_tiles[:n_dest_to_spawn]]
self[c.DEST].register_additional_items(destinations)
for dest in destinations_to_spawn:
del self._dest_spawn_timer[dest]
self.print(f'{n_dest_to_spawn} new destinations have been spawned')
elif self.dest_prop.spawn_mode == DestSpawnMode.GROUPED and n_dest_to_spawn == self.dest_prop.n_dests:
destinations = [Destination(tile) for tile in self[c.FLOOR].empty_tiles[:n_dest_to_spawn]]
self[c.DESTINATION].register_additional_items(destinations)
elif self.dest_prop.spawn_mode == DestModeOptions.GROUPED and n_dest_to_spawn == self.dest_prop.n_dests:
destinations = [Destination(tile, self[c.DEST]) for tile in self[c.FLOOR].empty_tiles[:n_dest_to_spawn]]
self[c.DEST].register_additional_items(destinations)
for dest in destinations_to_spawn:
del self._dest_spawn_timer[dest]
self.print(f'{n_dest_to_spawn} new destinations have been spawned')
@ -196,15 +224,14 @@ class DestinationFactory(BaseFactory):
else:
self.print('No Items are spawning, limit is reached.')
def do_additional_step(self) -> dict:
def step_hook(self) -> (List[dict], dict):
# noinspection PyUnresolvedReferences
info_dict = super().do_additional_step()
super_reward_info = super().step_hook()
for key, val in self._dest_spawn_timer.items():
self._dest_spawn_timer[key] = min(self.dest_prop.spawn_frequency, self._dest_spawn_timer[key] + 1)
for dest in list(self[c.DESTINATION].values()):
for dest in list(self[c.DEST].values()):
if dest.is_considered_reached:
self[c.REACHEDDESTINATION].register_item(dest)
self[c.DESTINATION].delete_entity(dest)
dest.change_register(self[c.DEST])
self._dest_spawn_timer[dest.name] = 0
self.print(f'{dest.name} is reached now, removing...')
else:
@ -217,54 +244,48 @@ class DestinationFactory(BaseFactory):
dest.leave(agent)
self.print(f'{agent.name} left the destination early.')
self.trigger_destination_spawn()
return info_dict
return super_reward_info
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
additional_observations = super().observations_hook()
additional_observations.update({c.DEST: self[c.DEST].as_array()})
return additional_observations
def per_agent_reward_hook(self, agent: Agent) -> Dict[str, dict]:
# noinspection PyUnresolvedReferences
reward, info_dict = super().calculate_additional_reward(agent)
if h.EnvActions.WAIT_ON_DEST == agent.temp_action:
if agent.temp_valid:
info_dict.update({f'{agent.name}_waiting_at_dest': 1})
info_dict.update(agent_waiting_at_dest=1)
self.print(f'{agent.name} just waited at {agent.pos}')
reward += 0.1
else:
info_dict.update({f'{agent.name}_tried_failed': 1})
info_dict.update(agent_waiting_failed=1)
self.print(f'{agent.name} just tried to wait wait at {agent.pos} but failed')
reward -= 0.1
if len(self[c.REACHEDDESTINATION]):
for reached_dest in list(self[c.REACHEDDESTINATION]):
reward_event_dict = super().per_agent_reward_hook(agent)
if len(self[c.DEST_REACHED]):
for reached_dest in list(self[c.DEST_REACHED]):
if agent.pos == reached_dest.pos:
info_dict.update({f'{agent.name}_reached_destination': 1})
info_dict.update(agent_reached_destination=1)
self.print(f'{agent.name} just reached destination at {agent.pos}')
reward += 0.5
self[c.REACHEDDESTINATION].delete_entity(reached_dest)
return reward, info_dict
self[c.DEST_REACHED].delete_env_object(reached_dest)
info_dict = {f'{agent.name}_{c.DEST_REACHED}': 1}
reward_event_dict.update({c.DEST_REACHED: {'reward': self.rewards_dest.DEST_REACHED,
'info': info_dict}})
return reward_event_dict
def render_additional_assets(self, mode='human'):
def render_assets_hook(self, mode='human'):
# noinspection PyUnresolvedReferences
additional_assets = super().render_additional_assets()
destinations = [RenderEntity(c.DESTINATION.value, dest.pos) for dest in self[c.DESTINATION]]
additional_assets = super().render_assets_hook()
destinations = [RenderEntity(c.DEST, dest.pos) for dest in self[c.DEST]]
additional_assets.extend(destinations)
return additional_assets
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as ARO, ObservationProperties
from environments.utility_classes import AgentRenderOptions as aro, ObservationProperties
render = True
dest_probs = DestinationProperties(n_dests=2, spawn_frequency=5, spawn_mode=DestSpawnMode.GROUPED)
dest_probs = DestProperties(n_dests=2, spawn_frequency=5, spawn_mode=DestModeOptions.GROUPED)
obs_props = ObservationProperties(render_agents=ARO.LEVEL, omit_agent_self=True, pomdp_r=2)
obs_props = ObservationProperties(render_agents=aro.LEVEL, omit_agent_self=True, pomdp_r=2)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': False,
'allow_no_op': False}
factory = DestinationFactory(n_agents=10, done_at_collision=False,
factory = DestFactory(n_agents=10, done_at_collision=False,
level_name='rooms', max_steps=400,
obs_prop=obs_props, parse_doors=True,
verbose=True,

View File

@ -1,47 +1,56 @@
import time
from enum import Enum
from pathlib import Path
from typing import List, Union, NamedTuple, Dict
import random
import numpy as np
from algorithms.TSP_dirt_agent import TSPDirtAgent
from environments.helpers import Constants as c
from environments import helpers as h
from environments.helpers import Constants as BaseConstants
from environments.helpers import EnvActions as BaseActions
from environments.factory.base.base_factory import BaseFactory
from environments.factory.base.objects import Agent, Action, Entity, Tile
from environments.factory.base.registers import Entities, MovingEntityObjectRegister
from environments.factory.base.objects import Agent, Action, Entity, Floor
from environments.factory.base.registers import Entities, EntityRegister
from environments.factory.base.renderer import RenderEntity
from environments.utility_classes import ObservationProperties
CLEAN_UP_ACTION = h.EnvActions.CLEAN_UP
class Constants(BaseConstants):
DIRT = 'Dirt'
class Actions(BaseActions):
CLEAN_UP = 'do_cleanup_action'
class RewardsDirt(NamedTuple):
CLEAN_UP_VALID: float = 0.5
CLEAN_UP_FAIL: float = -0.1
CLEAN_UP_LAST_PIECE: float = 4.5
class DirtProperties(NamedTuple):
initial_dirt_ratio: float = 0.3 # On INIT, on max how much tiles does the dirt spawn in percent.
initial_dirt_ratio: float = 0.3 # On INIT, on max how many tiles does the dirt spawn in percent.
initial_dirt_spawn_r_var: float = 0.05 # How much does the dirt spawn amount vary?
clean_amount: float = 1 # How much does the robot clean with one actions.
max_spawn_ratio: float = 0.20 # On max how much tiles does the dirt spawn in percent.
max_spawn_ratio: float = 0.20 # On max how many tiles does the dirt spawn in percent.
max_spawn_amount: float = 0.3 # How much dirt does spawn per tile at max.
spawn_frequency: int = 0 # Spawn Frequency in Steps.
max_local_amount: int = 2 # Max dirt amount per tile.
max_global_amount: int = 20 # Max dirt amount in the whole environment.
dirt_smear_amount: float = 0.2 # Agents smear dirt, when not cleaning up in place.
agent_can_interact: bool = True # Whether the agents can interact with the dirt in this environment.
done_when_clean: bool = True
class Dirt(Entity):
@property
def can_collide(self):
return False
@property
def amount(self):
return self._amount
@property
def encoding(self):
# Edit this if you want items to be drawn in the ops differntly
return self._amount
@ -52,6 +61,7 @@ class Dirt(Entity):
def set_new_amount(self, amount):
self._amount = amount
self._register.notify_change_to_value(self)
def summarize_state(self, **kwargs):
state_dict = super().summarize_state(**kwargs)
@ -59,18 +69,7 @@ class Dirt(Entity):
return state_dict
class DirtRegister(MovingEntityObjectRegister):
def as_array(self):
if self._array is not None:
self._array[:] = c.FREE_CELL.value
for dirt in list(self.values()):
if dirt.amount == 0:
self.delete_entity(dirt)
self._array[0, dirt.x, dirt.y] = dirt.amount
else:
self._array = np.zeros((1, *self._level_shape))
return self._array
class DirtRegister(EntityRegister):
_accepted_objects = Dirt
@ -86,14 +85,14 @@ class DirtRegister(MovingEntityObjectRegister):
super(DirtRegister, self).__init__(*args)
self._dirt_properties: DirtProperties = dirt_properties
def spawn_dirt(self, then_dirty_tiles) -> c:
if isinstance(then_dirty_tiles, Tile):
def spawn_dirt(self, then_dirty_tiles) -> bool:
if isinstance(then_dirty_tiles, Floor):
then_dirty_tiles = [then_dirty_tiles]
for tile in then_dirty_tiles:
if not self.amount > self.dirt_properties.max_global_amount:
dirt = self.by_pos(tile.pos)
if dirt is None:
dirt = Dirt(tile, amount=self.dirt_properties.max_spawn_amount)
dirt = Dirt(tile, self, amount=self.dirt_properties.max_spawn_amount)
self.register_item(dirt)
else:
new_value = dirt.amount + self.dirt_properties.max_spawn_amount
@ -117,50 +116,71 @@ def entropy(x):
return -(x * np.log(x + 1e-8)).sum()
c = Constants
a = Actions
# noinspection PyAttributeOutsideInit, PyAbstractClass
class DirtFactory(BaseFactory):
@property
def additional_actions(self) -> Union[Action, List[Action]]:
super_actions = super().additional_actions
if self.dirt_prop.agent_can_interact:
super_actions.append(Action(enum_ident=CLEAN_UP_ACTION))
def actions_hook(self) -> Union[Action, List[Action]]:
super_actions = super().actions_hook
super_actions.append(Action(str_ident=a.CLEAN_UP))
return super_actions
@property
def additional_entities(self) -> Dict[(Enum, Entities)]:
super_entities = super().additional_entities
def entities_hook(self) -> Dict[(str, Entities)]:
super_entities = super().entities_hook
dirt_register = DirtRegister(self.dirt_prop, self._level_shape)
super_entities.update(({c.DIRT: dirt_register}))
return super_entities
def __init__(self, *args, dirt_prop: DirtProperties = DirtProperties(), env_seed=time.time_ns(), **kwargs):
def __init__(self, *args,
dirt_prop: DirtProperties = DirtProperties(), rewards_dirt: RewardsDirt = RewardsDirt(),
env_seed=time.time_ns(), **kwargs):
if isinstance(dirt_prop, dict):
dirt_prop = DirtProperties(**dirt_prop)
if isinstance(rewards_dirt, dict):
rewards_dirt = RewardsDirt(**rewards_dirt)
self.dirt_prop = dirt_prop
self.rewards_dirt = rewards_dirt
self._dirt_rng = np.random.default_rng(env_seed)
self._dirt: DirtRegister
kwargs.update(env_seed=env_seed)
# TODO: Reset ---> document this
super().__init__(*args, **kwargs)
def render_additional_assets(self, mode='human'):
additional_assets = super().render_additional_assets()
def render_assets_hook(self, mode='human'):
additional_assets = super().render_assets_hook()
dirt = [RenderEntity('dirt', dirt.tile.pos, min(0.15 + dirt.amount, 1.5), 'scale')
for dirt in self[c.DIRT]]
additional_assets.extend(dirt)
return additional_assets
def clean_up(self, agent: Agent) -> c:
def do_cleanup_action(self, agent: Agent) -> (dict, dict):
if dirt := self[c.DIRT].by_pos(agent.pos):
new_dirt_amount = dirt.amount - self.dirt_prop.clean_amount
if new_dirt_amount <= 0:
self[c.DIRT].delete_entity(dirt)
self[c.DIRT].delete_env_object(dirt)
else:
dirt.set_new_amount(max(new_dirt_amount, c.FREE_CELL.value))
return c.VALID
valid = c.VALID
self.print(f'{agent.name} did just clean up some dirt at {agent.pos}.')
info_dict = {f'{agent.name}_{a.CLEAN_UP}_VALID': 1, 'cleanup_valid': 1}
reward = self.rewards_dirt.CLEAN_UP_VALID
else:
return c.NOT_VALID
valid = c.NOT_VALID
self.print(f'{agent.name} just tried to clean up some dirt at {agent.pos}, but failed.')
info_dict = {f'{agent.name}_{a.CLEAN_UP}_FAIL': 1, 'cleanup_fail': 1}
reward = self.rewards_dirt.CLEAN_UP_FAIL
if valid and self.dirt_prop.done_when_clean and (len(self[c.DIRT]) == 0):
reward += self.rewards_dirt.CLEAN_UP_LAST_PIECE
self.print(f'{agent.name} picked up the last piece of dirt!')
info_dict = {f'{agent.name}_{a.CLEAN_UP}_LAST_PIECE': 1}
return valid, dict(value=reward, reason=a.CLEAN_UP, info=info_dict)
def trigger_dirt_spawn(self, initial_spawn=False):
dirt_rng = self._dirt_rng
@ -176,21 +196,21 @@ class DirtFactory(BaseFactory):
n_dirt_tiles = max(0, int(new_spawn * len(free_for_dirt)))
self[c.DIRT].spawn_dirt(free_for_dirt[:n_dirt_tiles])
def do_additional_step(self) -> dict:
info_dict = super().do_additional_step()
if smear_amount := self.dirt_prop.dirt_smear_amount:
for agent in self[c.AGENT]:
if agent.temp_valid and agent.last_pos != c.NO_POS:
if self._actions.is_moving_action(agent.temp_action):
if old_pos_dirt := self[c.DIRT].by_pos(agent.last_pos):
if smeared_dirt := round(old_pos_dirt.amount * smear_amount, 2):
old_pos_dirt.set_new_amount(max(0, old_pos_dirt.amount-smeared_dirt))
if new_pos_dirt := self[c.DIRT].by_pos(agent.pos):
new_pos_dirt.set_new_amount(max(0, new_pos_dirt.amount + smeared_dirt))
else:
if self[c.DIRT].spawn_dirt(agent.tile):
new_pos_dirt = self[c.DIRT].by_pos(agent.pos)
new_pos_dirt.set_new_amount(max(0, new_pos_dirt.amount + smeared_dirt))
def step_hook(self) -> (List[dict], dict):
super_reward_info = super().step_hook()
# if smear_amount := self.dirt_prop.dirt_smear_amount:
# for agent in self[c.AGENT]:
# if agent.temp_valid and agent.last_pos != c.NO_POS:
# if self._actions.is_moving_action(agent.temp_action):
# if old_pos_dirt := self[c.DIRT].by_pos(agent.last_pos):
# if smeared_dirt := round(old_pos_dirt.amount * smear_amount, 2):
# old_pos_dirt.set_new_amount(max(0, old_pos_dirt.amount-smeared_dirt))
# if new_pos_dirt := self[c.DIRT].by_pos(agent.pos):
# new_pos_dirt.set_new_amount(max(0, new_pos_dirt.amount + smeared_dirt))
# else:
# if self[c.DIRT].spawn_dirt(agent.tile):
# new_pos_dirt = self[c.DIRT].by_pos(agent.pos)
# new_pos_dirt.set_new_amount(max(0, new_pos_dirt.amount + smeared_dirt))
if self._next_dirt_spawn < 0:
pass # No Dirt Spawn
elif not self._next_dirt_spawn:
@ -198,37 +218,44 @@ class DirtFactory(BaseFactory):
self._next_dirt_spawn = self.dirt_prop.spawn_frequency
else:
self._next_dirt_spawn -= 1
return info_dict
return super_reward_info
def do_additional_actions(self, agent: Agent, action: Action) -> Union[None, c]:
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == CLEAN_UP_ACTION:
if self.dirt_prop.agent_can_interact:
valid = self.clean_up(agent)
return valid
else:
return c.NOT_VALID
def do_additional_actions(self, agent: Agent, action: Action) -> (dict, dict):
action_result = super().do_additional_actions(agent, action)
if action_result is None:
if action == a.CLEAN_UP:
return self.do_cleanup_action(agent)
else:
return None
else:
return valid
return action_result
def do_additional_reset(self) -> None:
super().do_additional_reset()
def reset_hook(self) -> None:
super().reset_hook()
self.trigger_dirt_spawn(initial_spawn=True)
self._next_dirt_spawn = self.dirt_prop.spawn_frequency if self.dirt_prop.spawn_frequency else -1
def check_additional_done(self):
super_done = super().check_additional_done()
done = self.dirt_prop.done_when_clean and (len(self[c.DIRT]) == 0)
return super_done or done
def check_additional_done(self) -> (bool, dict):
super_done, super_dict = super().check_additional_done()
if self.dirt_prop.done_when_clean:
if all_cleaned := len(self[c.DIRT]) == 0:
super_dict.update(ALL_CLEAN_DONE=all_cleaned)
return all_cleaned, super_dict
return super_done, super_dict
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
additional_observations = super().observations_hook()
additional_observations.update({c.DIRT: self[c.DIRT].as_array()})
return additional_observations
def gather_additional_info(self, agent: Agent) -> dict:
event_reward_dict = super().per_agent_reward_hook(agent)
info_dict = dict()
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
reward, info_dict = super().calculate_additional_reward(agent)
dirt = [dirt.amount for dirt in self[c.DIRT]]
current_dirt_amount = sum(dirt)
dirty_tile_count = len(dirt)
# if dirty_tile_count:
# dirt_distribution_score = entropy(softmax(np.asarray(dirt)) / dirty_tile_count)
# else:
@ -236,32 +263,13 @@ class DirtFactory(BaseFactory):
info_dict.update(dirt_amount=current_dirt_amount)
info_dict.update(dirty_tile_count=dirty_tile_count)
# info_dict.update(dirt_distribution_score=dirt_distribution_score)
if agent.temp_action == CLEAN_UP_ACTION:
if agent.temp_valid:
# Reward if pickup succeds,
# 0.5 on every pickup
reward += 0.5
info_dict.update(dirt_cleaned=1)
if self.dirt_prop.done_when_clean and (len(self[c.DIRT]) == 0):
# 0.5 additional reward for the very last pickup
reward += 4.5
info_dict.update(done_clean=1)
self.print(f'{agent.name} did just clean up some dirt at {agent.pos}.')
else:
reward -= 0.01
self.print(f'{agent.name} just tried to clean up some dirt at {agent.pos}, but failed.')
info_dict.update({f'{agent.name}_failed_dirt_cleanup': 1})
info_dict.update(failed_dirt_clean=1)
# Potential based rewards ->
# track the last reward , minus the current reward = potential
return reward, info_dict
event_reward_dict.update({'info': info_dict})
return event_reward_dict
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as ARO
from environments.utility_classes import AgentRenderOptions as aro
render = True
dirt_props = DirtProperties(
@ -273,46 +281,62 @@ if __name__ == '__main__':
max_local_amount=1,
spawn_frequency=0,
max_spawn_ratio=0.05,
dirt_smear_amount=0.0,
agent_can_interact=True
dirt_smear_amount=0.0
)
obs_props = ObservationProperties(render_agents=ARO.COMBINED, omit_agent_self=True,
pomdp_r=2, additional_agent_placeholder=None)
obs_props = ObservationProperties(render_agents=aro.COMBINED, omit_agent_self=True,
pomdp_r=2, additional_agent_placeholder=None, cast_shadows=True,
indicate_door_area=False)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': False,
'allow_no_op': False}
import time
global_timings = []
for i in range(10):
factory = DirtFactory(n_agents=1, done_at_collision=False,
level_name='rooms', max_steps=400,
factory = DirtFactory(n_agents=10, done_at_collision=False,
level_name='rooms', max_steps=1000,
doors_have_area=False,
obs_prop=obs_props, parse_doors=True,
record_episodes=True, verbose=True,
verbose=True,
mv_prop=move_props, dirt_prop=dirt_props,
inject_agents=[TSPDirtAgent]
# inject_agents=[TSPDirtAgent],
)
factory.save_params(Path('rewards_param'))
# noinspection DuplicatedCode
n_actions = factory.action_space.n - 1
_ = factory.observation_space
obs_space = factory.observation_space
obs_space_named = factory.named_observation_space
action_space_named = factory.named_action_space
times = []
for epoch in range(10):
start_time = time.time()
random_actions = [[random.randint(0, n_actions) for _
in range(factory.n_agents)] for _
in range(factory.max_steps+1)]
env_state = factory.reset()
if render:
factory.render()
tsp_agent = factory.get_injected_agents()[0]
# tsp_agent = factory.get_injected_agents()[0]
r = 0
rwrd = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = factory.step(tsp_agent.predict())
r += step_r
# agent_i_action = tsp_agent.predict()
env_state, step_rwrd, done_bool, info_obj = factory.step(agent_i_action)
rwrd += step_rwrd
if render:
factory.render()
if done_bool:
break
print(f'Factory run {epoch} done, reward is:\n {r}')
times.append(time.time() - start_time)
# print(f'Factory run {epoch} done, reward is:\n {r}')
print('Mean Time Taken: ', sum(times) / 10)
global_timings.extend(times)
print('Mean Time Taken: ', sum(global_timings) / len(global_timings))
print('Median Time Taken: ', global_timings[len(global_timings)//2])
pass

View File

@ -0,0 +1,58 @@
from typing import Dict, List, Union
import numpy as np
from environments.factory.base.objects import Agent, Entity, Action
from environments.factory.factory_dirt import Dirt, DirtRegister, DirtFactory
from environments.factory.base.objects import Floor
from environments.factory.base.registers import Floors, Entities, EntityRegister
class Machines(EntityRegister):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class Machine(Entity):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class StationaryMachinesDirtFactory(DirtFactory):
def __init__(self, *args, **kwargs):
self._machine_coords = [(6, 6), (12, 13)]
super().__init__(*args, **kwargs)
def entities_hook(self) -> Dict[(str, Entities)]:
super_entities = super().entities_hook()
return super_entities
def reset_hook(self) -> None:
pass
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
pass
def actions_hook(self) -> Union[Action, List[Action]]:
pass
def step_hook(self) -> (List[dict], dict):
pass
def per_agent_raw_observations_hook(self, agent) -> Dict[str, np.typing.ArrayLike]:
super_per_agent_raw_observations = super().per_agent_raw_observations_hook(agent)
return super_per_agent_raw_observations
def per_agent_reward_hook(self, agent: Agent) -> Dict[str, dict]:
pass
def pre_step_hook(self) -> None:
pass
def post_step_hook(self) -> dict:
pass

View File

@ -1,25 +1,40 @@
import time
from collections import deque, UserList
from enum import Enum
from collections import deque
from typing import List, Union, NamedTuple, Dict
import numpy as np
import random
from environments.factory.base.base_factory import BaseFactory
from environments.helpers import Constants as c
from environments.helpers import Constants as BaseConstants
from environments.helpers import EnvActions as BaseActions
from environments import helpers as h
from environments.factory.base.objects import Agent, Entity, Action, Tile, MoveableEntity
from environments.factory.base.registers import Entities, EntityObjectRegister, ObjectRegister, \
MovingEntityObjectRegister
from environments.factory.base.objects import Agent, Entity, Action, Floor
from environments.factory.base.registers import Entities, EntityRegister, BoundEnvObjRegister, ObjectRegister
from environments.factory.base.renderer import RenderEntity
class Constants(BaseConstants):
NO_ITEM = 0
ITEM_DROP_OFF = 1
# Item Env
ITEM = 'Item'
INVENTORY = 'Inventory'
DROP_OFF = 'Drop_Off'
class Item(MoveableEntity):
class Actions(BaseActions):
ITEM_ACTION = 'ITEMACTION'
class RewardsItem(NamedTuple):
DROP_OFF_VALID: float = 0.1
DROP_OFF_FAIL: float = -0.1
PICK_UP_FAIL: float = -0.1
PICK_UP_VALID: float = 0.1
class Item(Entity):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@ -29,10 +44,6 @@ class Item(MoveableEntity):
def auto_despawn(self):
return self._auto_despawn
@property
def can_collide(self):
return False
@property
def encoding(self):
# Edit this if you want items to be drawn in the ops differently
@ -41,20 +52,17 @@ class Item(MoveableEntity):
def set_auto_despawn(self, auto_despawn):
self._auto_despawn = auto_despawn
def set_tile_to(self, no_pos_tile):
assert self._register.__class__.__name__ != ItemRegister.__class__
self._tile = no_pos_tile
class ItemRegister(MovingEntityObjectRegister):
def as_array(self):
self._array[:] = c.FREE_CELL.value
for item in self:
if item.pos != c.NO_POS.value:
self._array[0, item.x, item.y] = item.encoding
return self._array
class ItemRegister(EntityRegister):
_accepted_objects = Item
def spawn_items(self, tiles: List[Tile]):
items = [Item(tile) for tile in tiles]
def spawn_items(self, tiles: List[Floor]):
items = [Item(tile, self) for tile in tiles]
self.register_additional_items(items)
def despawn_items(self, items: List[Item]):
@ -63,72 +71,48 @@ class ItemRegister(MovingEntityObjectRegister):
del self[item]
class Inventory(UserList):
@property
def is_blocking_light(self):
return False
class Inventory(BoundEnvObjRegister):
@property
def name(self):
return f'{self.__class__.__name__}({self.agent.name})'
return f'{self.__class__.__name__}({self._bound_entity.name})'
def __init__(self, pomdp_r: int, level_shape: (int, int), agent: Agent, capacity: int):
super(Inventory, self).__init__()
self.agent = agent
self.pomdp_r = pomdp_r
self._level_shape = level_shape
if self.pomdp_r:
self._array = np.zeros((1, pomdp_r * 2 + 1, pomdp_r * 2 + 1))
else:
self._array = np.zeros((1, *self._level_shape))
self.capacity = min(capacity, self._array.size)
def __init__(self, agent: Agent, capacity: int, *args, **kwargs):
super(Inventory, self).__init__(agent, *args, is_blocking_light=False, can_be_shadowed=False, **kwargs)
self.capacity = capacity
def as_array(self):
self._array[:] = c.FREE_CELL.value
for item_idx, item in enumerate(self):
x_diff, y_diff = divmod(item_idx, self._array.shape[1])
self._array[0, int(x_diff), int(y_diff)] = item.encoding
return self._array
if self._array is None:
self._array = np.zeros((1, *self._shape))
return super(Inventory, self).as_array()
def __repr__(self):
return f'{self.__class__.__name__}[{self.agent.name}]({self.data})'
def append(self, item) -> None:
if len(self) < self.capacity:
super(Inventory, self).append(item)
else:
raise RuntimeError('Inventory is full')
def belongs_to_entity(self, entity):
return self.agent == entity
def summarize_state(self, **kwargs):
def summarize_states(self, **kwargs):
attr_dict = {key: str(val) for key, val in self.__dict__.items() if not key.startswith('_') and key != 'data'}
attr_dict.update(dict(items={val.name: val.summarize_state(**kwargs) for val in self}))
attr_dict.update(dict(items={key: val.summarize_state(**kwargs) for key, val in self.items()}))
attr_dict.update(dict(name=self.name))
return attr_dict
def pop(self):
item_to_pop = self[0]
self.delete_env_object(item_to_pop)
return item_to_pop
class Inventories(ObjectRegister):
_accepted_objects = Inventory
is_blocking_light = False
can_be_shadowed = False
hide_from_obs_builder = True
def __init__(self, *args, **kwargs):
def __init__(self, obs_shape, *args, **kwargs):
super(Inventories, self).__init__(*args, is_per_agent=True, individual_slices=True, **kwargs)
self.is_observable = True
self._obs_shape = obs_shape
def as_array(self):
# self._array[:] = c.FREE_CELL.value
for inv_idx, inventory in enumerate(self):
self._array[inv_idx] = inventory.as_array()
return self._array
return np.stack([inventory.as_array() for inv_idx, inventory in enumerate(self)])
def spawn_inventories(self, agents, pomdp_r, capacity):
inventories = [self._accepted_objects(pomdp_r, self._level_shape, agent, capacity)
def spawn_inventories(self, agents, capacity):
inventories = [self._accepted_objects(agent, capacity, self._obs_shape)
for _, agent in enumerate(agents)]
self.register_additional_items(inventories)
@ -144,21 +128,15 @@ class Inventories(ObjectRegister):
except StopIteration:
return None
def summarize_states(self, n_steps=None):
# as dict with additional nesting
# return dict(items=super(Inventories, self).summarize_states())
return super(Inventories, self).summarize_states(n_steps=n_steps)
def summarize_states(self, **kwargs):
return {key: val.summarize_states(**kwargs) for key, val in self.items()}
class DropOffLocation(Entity):
@property
def can_collide(self):
return False
@property
def encoding(self):
return ITEM_DROP_OFF
return Constants.ITEM_DROP_OFF
def __init__(self, *args, storage_size_until_full: int = 5, auto_item_despawn_interval: int = 5, **kwargs):
super(DropOffLocation, self).__init__(*args, **kwargs)
@ -183,20 +161,10 @@ class DropOffLocation(Entity):
return super().summarize_state(n_steps=n_steps)
class DropOffLocations(EntityObjectRegister):
class DropOffLocations(EntityRegister):
_accepted_objects = DropOffLocation
def as_array(self):
self._array[:] = c.FREE_CELL.value
for item in self:
if item.pos != c.NO_POS.value:
self._array[0, item.x, item.y] = item.encoding
return self._array
def __repr__(self):
super(DropOffLocations, self).__repr__()
class ItemProperties(NamedTuple):
n_items: int = 5 # How many items are there at the same time
@ -204,32 +172,39 @@ class ItemProperties(NamedTuple):
n_drop_off_locations: int = 5 # How many DropOff locations are there at the same time
max_dropoff_storage_size: int = 0 # How many items are needed until the dropoff is full
max_agent_inventory_capacity: int = 5 # How many items are needed until the agent inventory is full
agent_can_interact: bool = True # Whether agents have the possibility to interact with the domain items
c = Constants
a = Actions
# noinspection PyAttributeOutsideInit, PyAbstractClass
class ItemFactory(BaseFactory):
# noinspection PyMissingConstructor
def __init__(self, *args, item_prop: ItemProperties = ItemProperties(), env_seed=time.time_ns(), **kwargs):
def __init__(self, *args, item_prop: ItemProperties = ItemProperties(), env_seed=time.time_ns(),
rewards_item: RewardsItem = RewardsItem(), **kwargs):
if isinstance(item_prop, dict):
item_prop = ItemProperties(**item_prop)
if isinstance(rewards_item, dict):
rewards_item = RewardsItem(**rewards_item)
self.item_prop = item_prop
self.rewards_item = rewards_item
kwargs.update(env_seed=env_seed)
self._item_rng = np.random.default_rng(env_seed)
assert (item_prop.n_items <= ((1 + kwargs.get('_pomdp_r', 0) * 2) ** 2)) or not kwargs.get('_pomdp_r', 0)
super().__init__(*args, **kwargs)
@property
def additional_actions(self) -> Union[Action, List[Action]]:
def actions_hook(self) -> Union[Action, List[Action]]:
# noinspection PyUnresolvedReferences
super_actions = super().additional_actions
super_actions.append(Action(enum_ident=h.EnvActions.ITEM_ACTION))
super_actions = super().actions_hook
super_actions.append(Action(str_ident=a.ITEM_ACTION))
return super_actions
@property
def additional_entities(self) -> Dict[(Enum, Entities)]:
def entities_hook(self) -> Dict[(str, Entities)]:
# noinspection PyUnresolvedReferences
super_entities = super().additional_entities
super_entities = super().entities_hook
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_drop_off_locations]
drop_offs = DropOffLocations.from_tiles(
@ -241,54 +216,65 @@ class ItemFactory(BaseFactory):
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_items]
item_register.spawn_items(empty_tiles)
inventories = Inventories(self._level_shape if not self._pomdp_r else ((self.pomdp_diameter,) * 2))
inventories.spawn_inventories(self[c.AGENT], self._pomdp_r,
self.item_prop.max_agent_inventory_capacity)
inventories = Inventories(self._obs_shape, self._level_shape)
inventories.spawn_inventories(self[c.AGENT], self.item_prop.max_agent_inventory_capacity)
super_entities.update({c.DROP_OFF: drop_offs, c.ITEM: item_register, c.INVENTORY: inventories})
return super_entities
def additional_per_agent_obs_build(self, agent) -> List[np.ndarray]:
additional_per_agent_obs_build = super().additional_per_agent_obs_build(agent)
additional_per_agent_obs_build.append(self[c.INVENTORY].by_entity(agent).as_array())
return additional_per_agent_obs_build
def per_agent_raw_observations_hook(self, agent) -> Dict[str, np.typing.ArrayLike]:
additional_raw_observations = super().per_agent_raw_observations_hook(agent)
additional_raw_observations.update({c.INVENTORY: self[c.INVENTORY].by_entity(agent).as_array()})
return additional_raw_observations
def do_item_action(self, agent: Agent):
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
additional_observations = super().observations_hook()
additional_observations.update({c.ITEM: self[c.ITEM].as_array()})
additional_observations.update({c.DROP_OFF: self[c.DROP_OFF].as_array()})
return additional_observations
def do_item_action(self, agent: Agent) -> (dict, dict):
inventory = self[c.INVENTORY].by_entity(agent)
if drop_off := self[c.DROP_OFF].by_pos(agent.pos):
if inventory:
valid = drop_off.place_item(inventory.pop(0))
return valid
valid = drop_off.place_item(inventory.pop())
else:
return c.NOT_VALID
valid = c.NOT_VALID
if valid:
self.print(f'{agent.name} just dropped of an item at {drop_off.pos}.')
info_dict = {f'{agent.name}_DROPOFF_VALID': 1, 'DROPOFF_VALID': 1}
else:
self.print(f'{agent.name} just tried to drop off at {agent.pos}, but failed.')
info_dict = {f'{agent.name}_DROPOFF_FAIL': 1, 'DROPOFF_FAIL': 1}
reward = dict(value=self.rewards_item.DROP_OFF_VALID if valid else self.rewards_item.DROP_OFF_FAIL,
reason=a.ITEM_ACTION, info=info_dict)
return valid, reward
elif item := self[c.ITEM].by_pos(agent.pos):
try:
inventory.append(item)
item.move(self._NO_POS_TILE)
return c.VALID
except RuntimeError:
return c.NOT_VALID
item.change_register(inventory)
item.set_tile_to(self._NO_POS_TILE)
self.print(f'{agent.name} just picked up an item at {agent.pos}')
info_dict = {f'{agent.name}_{a.ITEM_ACTION}_VALID': 1, f'{a.ITEM_ACTION}_VALID': 1}
return c.VALID, dict(value=self.rewards_item.PICK_UP_VALID, reason=a.ITEM_ACTION, info=info_dict)
else:
return c.NOT_VALID
self.print(f'{agent.name} just tried to pick up an item at {agent.pos}, but failed.')
info_dict = {f'{agent.name}_{a.ITEM_ACTION}_FAIL': 1, f'{a.ITEM_ACTION}_FAIL': 1}
return c.NOT_VALID, dict(value=self.rewards_item.PICK_UP_FAIL, reason=a.ITEM_ACTION, info=info_dict)
def do_additional_actions(self, agent: Agent, action: Action) -> Union[None, c]:
def do_additional_actions(self, agent: Agent, action: Action) -> (dict, dict):
# noinspection PyUnresolvedReferences
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == h.EnvActions.ITEM_ACTION:
if self.item_prop.agent_can_interact:
valid = self.do_item_action(agent)
return valid
else:
return c.NOT_VALID
action_result = super().do_additional_actions(agent, action)
if action_result is None:
if action == a.ITEM_ACTION:
action_result = self.do_item_action(agent)
return action_result
else:
return None
else:
return valid
return action_result
def do_additional_reset(self) -> None:
def reset_hook(self) -> None:
# noinspection PyUnresolvedReferences
super().do_additional_reset()
super().reset_hook()
self._next_item_spawn = self.item_prop.spawn_frequency
self.trigger_item_spawn()
@ -301,14 +287,14 @@ class ItemFactory(BaseFactory):
else:
self.print('No Items are spawning, limit is reached.')
def do_additional_step(self) -> dict:
def step_hook(self) -> (List[dict], dict):
# noinspection PyUnresolvedReferences
info_dict = super().do_additional_step()
super_reward_info = super().step_hook()
for item in list(self[c.ITEM].values()):
if item.auto_despawn >= 1:
item.set_auto_despawn(item.auto_despawn-1)
elif not item.auto_despawn:
self[c.ITEM].delete_entity(item)
self[c.ITEM].delete_env_object(item)
else:
pass
@ -316,60 +302,32 @@ class ItemFactory(BaseFactory):
self.trigger_item_spawn()
else:
self._next_item_spawn = max(0, self._next_item_spawn-1)
return info_dict
return super_reward_info
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
def render_assets_hook(self, mode='human'):
# noinspection PyUnresolvedReferences
reward, info_dict = super().calculate_additional_reward(agent)
if h.EnvActions.ITEM_ACTION == agent.temp_action:
if agent.temp_valid:
if drop_off := self[c.DROP_OFF].by_pos(agent.pos):
info_dict.update({f'{agent.name}_item_drop_off': 1})
info_dict.update(item_drop_off=1)
self.print(f'{agent.name} just dropped of an item at {drop_off.pos}.')
reward += 0.5
else:
info_dict.update({f'{agent.name}_item_pickup': 1})
info_dict.update(item_pickup=1)
self.print(f'{agent.name} just picked up an item at {agent.pos}')
reward += 0.1
else:
if self[c.DROP_OFF].by_pos(agent.pos):
info_dict.update({f'{agent.name}_failed_drop_off': 1})
info_dict.update(failed_drop_off=1)
self.print(f'{agent.name} just tried to drop off at {agent.pos}, but failed.')
reward -= 0.1
else:
info_dict.update({f'{agent.name}_failed_item_action': 1})
info_dict.update(failed_pick_up=1)
self.print(f'{agent.name} just tried to pick up an item at {agent.pos}, but failed.')
reward -= 0.1
return reward, info_dict
def render_additional_assets(self, mode='human'):
# noinspection PyUnresolvedReferences
additional_assets = super().render_additional_assets()
items = [RenderEntity(c.ITEM.value, item.tile.pos) for item in self[c.ITEM]]
additional_assets = super().render_assets_hook()
items = [RenderEntity(c.ITEM, item.tile.pos) for item in self[c.ITEM] if item.tile != self._NO_POS_TILE]
additional_assets.extend(items)
drop_offs = [RenderEntity(c.DROP_OFF.value, drop_off.tile.pos) for drop_off in self[c.DROP_OFF]]
drop_offs = [RenderEntity(c.DROP_OFF, drop_off.tile.pos) for drop_off in self[c.DROP_OFF]]
additional_assets.extend(drop_offs)
return additional_assets
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as ARO, ObservationProperties
from environments.utility_classes import AgentRenderOptions as aro, ObservationProperties
render = True
item_probs = ItemProperties()
item_probs = ItemProperties(n_items=30, n_drop_off_locations=6)
obs_props = ObservationProperties(render_agents=ARO.LEVEL, omit_agent_self=True, pomdp_r=2)
obs_props = ObservationProperties(render_agents=aro.SEPERATE, omit_agent_self=True, pomdp_r=2)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': False,
'allow_diagonal_movement': True,
'allow_no_op': False}
factory = ItemFactory(n_agents=3, done_at_collision=False,
factory = ItemFactory(n_agents=6, done_at_collision=False,
level_name='rooms', max_steps=400,
obs_prop=obs_props, parse_doors=True,
record_episodes=True, verbose=True,
@ -378,20 +336,21 @@ if __name__ == '__main__':
# noinspection DuplicatedCode
n_actions = factory.action_space.n - 1
_ = factory.observation_space
obs_space = factory.observation_space
obs_space_named = factory.named_observation_space
for epoch in range(4):
for epoch in range(400):
random_actions = [[random.randint(0, n_actions) for _
in range(factory.n_agents)] for _
in range(factory.max_steps + 1)]
env_state = factory.reset()
r = 0
rwrd = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
r += step_r
rwrd += step_r
if render:
factory.render()
if done_bool:
break
print(f'Factory run {epoch} done, reward is:\n {r}')
print(f'Factory run {epoch} done, reward is:\n {rwrd}')
pass

View File

@ -1,8 +1,12 @@
movement_props:
parse_doors: True
doors_have_area: True
done_at_collision: False
level_name: "rooms"
mv_prop:
allow_diagonal_movement: True
allow_square_movement: True
allow_no_op: False
dirt_props:
dirt_prop:
initial_dirt_ratio: 0.35
initial_dirt_spawn_r_var : 0.1
clean_amount: 0.34
@ -12,8 +16,15 @@ dirt_props:
spawn_frequency: 0
max_spawn_ratio: 0.05
dirt_smear_amount: 0.0
agent_can_interact: True
factory_props:
parse_doors: True
level_name: "rooms"
doors_have_area: False
done_when_clean: True
rewards_base:
MOVEMENTS_VALID: 0
MOVEMENTS_FAIL: 0
NOOP: 0
USE_DOOR_VALID: 0
USE_DOOR_FAIL: 0
COLLISION: 0
rewards_dirt:
CLEAN_UP_VALID: 1
CLEAN_UP_FAIL: 0
CLEAN_UP_LAST_PIECE: 5

View File

@ -1,12 +1,10 @@
import itertools
from collections import defaultdict
from enum import Enum, auto
from typing import Tuple, Union
from typing import Tuple, Union, Dict, List, NamedTuple
import networkx as nx
import numpy as np
from pathlib import Path
from numpy.typing import ArrayLike
from stable_baselines3 import PPO, DQN, A2C
MODEL_MAP = dict(PPO=PPO, DQN=DQN, A2C=A2C)
@ -20,7 +18,7 @@ IGNORED_DF_COLUMNS = ['Episode', 'Run', 'train_step', 'step', 'index', 'dirt_amo
# Constants
class Constants(Enum):
class Constants:
WALL = '#'
WALLS = 'Walls'
FLOOR = 'Floor'
@ -29,44 +27,28 @@ class Constants(Enum):
LEVEL = 'Level'
AGENT = 'Agent'
AGENT_PLACEHOLDER = 'AGENT_PLACEHOLDER'
GLOBAL_POSITION = 'GLOBAL_POSITION'
FREE_CELL = 0
OCCUPIED_CELL = 1
SHADOWED_CELL = -1
ACCESS_DOOR_CELL = 1/3
OPEN_DOOR_CELL = 2/3
CLOSED_DOOR_CELL = 3/3
NO_POS = (-9999, -9999)
DOORS = 'Doors'
CLOSED_DOOR = 'closed'
OPEN_DOOR = 'open'
ACCESS_DOOR = 'access'
ACTION = 'action'
COLLISIONS = 'collision'
VALID = 'valid'
NOT_VALID = 'not_valid'
# Dirt Env
DIRT = 'Dirt'
# Item Env
ITEM = 'Item'
INVENTORY = 'Inventory'
DROP_OFF = 'Drop_Off'
# Battery Env
CHARGE_POD = 'Charge_Pod'
BATTERIES = 'BATTERIES'
# Destination Env
DESTINATION = 'Destination'
REACHEDDESTINATION = 'ReachedDestination'
def __bool__(self):
if 'not_' in self.value:
return False
else:
return bool(self.value)
COLLISION = 'collision'
VALID = True
NOT_VALID = False
class MovingAction(Enum):
class EnvActions:
# Movements
NORTH = 'north'
EAST = 'east'
SOUTH = 'south'
@ -76,39 +58,101 @@ class MovingAction(Enum):
SOUTHWEST = 'south_west'
NORTHWEST = 'north_west'
@classmethod
def is_member(cls, other):
return any([other == direction for direction in cls])
# Other
# MOVE = 'move'
NOOP = 'no_op'
USE_DOOR = 'use_door'
@classmethod
def square(cls):
def is_move(cls, other):
return any([other == direction for direction in cls.movement_actions()])
@classmethod
def square_move(cls):
return [cls.NORTH, cls.EAST, cls.SOUTH, cls.WEST]
@classmethod
def diagonal(cls):
def diagonal_move(cls):
return [cls.NORTHEAST, cls.SOUTHEAST, cls.SOUTHWEST, cls.NORTHWEST]
class EnvActions(Enum):
NOOP = 'no_op'
USE_DOOR = 'use_door'
CLEAN_UP = 'clean_up'
ITEM_ACTION = 'item_action'
CHARGE = 'charge'
WAIT_ON_DEST = 'wait'
@classmethod
def movement_actions(cls):
return list(itertools.chain(cls.square_move(), cls.diagonal_move()))
m = MovingAction
class RewardsBase(NamedTuple):
MOVEMENTS_VALID: float = -0.001
MOVEMENTS_FAIL: float = -0.05
NOOP: float = -0.01
USE_DOOR_VALID: float = -0.00
USE_DOOR_FAIL: float = -0.01
COLLISION: float = -0.5
m = EnvActions
c = Constants
ACTIONMAP = defaultdict(lambda: (0, 0), {m.NORTH: (-1, 0), m.NORTHEAST: (-1, +1),
ACTIONMAP = defaultdict(lambda: (0, 0),
{m.NORTH: (-1, 0), m.NORTHEAST: (-1, 1),
m.EAST: (0, 1), m.SOUTHEAST: (1, 1),
m.SOUTH: (1, 0), m.SOUTHWEST: (+1, -1),
m.SOUTH: (1, 0), m.SOUTHWEST: (1, -1),
m.WEST: (0, -1), m.NORTHWEST: (-1, -1)
}
)
class ObservationTranslator:
def __init__(self, obs_shape_2d: (int, int), this_named_observation_space: Dict[str, dict],
*per_agent_named_obs_space: Dict[str, dict],
placeholder_fill_value: Union[int, str] = 'N'):
assert len(obs_shape_2d) == 2
self.obs_shape = obs_shape_2d
if isinstance(placeholder_fill_value, str):
if placeholder_fill_value.lower() in ['normal', 'n']:
self.random_fill = lambda: np.random.normal(size=self.obs_shape)
elif placeholder_fill_value.lower() in ['uniform', 'u']:
self.random_fill = lambda: np.random.uniform(size=self.obs_shape)
else:
raise ValueError('Please chooe between "uniform" or "normal"')
else:
self.random_fill = None
self._this_named_obs_space = this_named_observation_space
self._per_agent_named_obs_space = list(per_agent_named_obs_space)
def translate_observation(self, agent_idx: int, obs: np.ndarray):
target_obs_space = self._per_agent_named_obs_space[agent_idx]
translation = [idx_space_dict for name, idx_space_dict in target_obs_space.items()]
flat_translation = [x for y in translation for x in y]
return np.take(obs, flat_translation, axis=1 if obs.ndim == 4 else 0)
def translate_observations(self, observations: List[ArrayLike]):
return [self.translate_observation(idx, observation) for idx, observation in enumerate(observations)]
def __call__(self, observations):
return self.translate_observations(observations)
class ActionTranslator:
def __init__(self, target_named_action_space: Dict[str, int], *per_agent_named_action_space: Dict[str, int]):
self._target_named_action_space = target_named_action_space
self._per_agent_named_action_space = list(per_agent_named_action_space)
self._per_agent_idx_actions = [{idx: a for a, idx in x.items()} for x in self._per_agent_named_action_space]
def translate_action(self, agent_idx: int, action: int):
named_action = self._per_agent_idx_actions[agent_idx][action]
translated_action = self._target_named_action_space[named_action]
return translated_action
def translate_actions(self, actions: List[int]):
return [self.translate_action(idx, action) for idx, action in enumerate(actions)]
def __call__(self, actions):
return self.translate_actions(actions)
# Utility functions
def parse_level(path):
with path.open('r') as lvl:
@ -118,17 +162,14 @@ def parse_level(path):
return level
def one_hot_level(level, wall_char: Union[c, str] = c.WALL):
def one_hot_level(level, wall_char: str = c.WALL):
grid = np.array(level)
binary_grid = np.zeros(grid.shape, dtype=np.int8)
if wall_char in c:
binary_grid[grid == wall_char.value] = c.OCCUPIED_CELL.value
else:
binary_grid[grid == wall_char] = c.OCCUPIED_CELL.value
binary_grid[grid == wall_char] = c.OCCUPIED_CELL
return binary_grid
def check_position(slice_to_check_against: np.ndarray, position_to_check: Tuple[int, int]):
def check_position(slice_to_check_against: ArrayLike, position_to_check: Tuple[int, int]):
x_pos, y_pos = position_to_check
# Check if agent colides with grid boundrys
@ -145,19 +186,24 @@ def check_position(slice_to_check_against: np.ndarray, position_to_check: Tuple[
def asset_str(agent):
# What does this abonimation do?
# if any([x is None for x in [self._slices[j] for j in agent.collisions]]):
# if any([x is None for x in [cls._slices[j] for j in agent.collisions]]):
# print('error')
col_names = [x.name for x in agent.temp_collisions]
if any(c.AGENT.value in name for name in col_names):
if step_result := agent.step_result:
action = step_result['action_name']
valid = step_result['action_valid']
col_names = [x.name for x in step_result['collisions']]
if any(c.AGENT in name for name in col_names):
return 'agent_collision', 'blank'
elif not agent.temp_valid or c.LEVEL.name in col_names or c.AGENT.name in col_names:
return c.AGENT.value, 'invalid'
elif agent.temp_valid and not MovingAction.is_member(agent.temp_action):
return c.AGENT.value, 'valid'
elif agent.temp_valid and MovingAction.is_member(agent.temp_action):
return c.AGENT.value, 'move'
elif not valid or c.LEVEL in col_names or c.AGENT in col_names:
return c.AGENT, 'invalid'
elif valid and not EnvActions.is_move(action):
return c.AGENT, 'valid'
elif valid and EnvActions.is_move(action):
return c.AGENT, 'move'
else:
return c.AGENT.value, 'idle'
return c.AGENT, 'idle'
else:
return c.AGENT, 'idle'
def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, allow_manhattan_connections=True):
@ -176,8 +222,3 @@ def points_to_graph(coordiniates_or_tiles, allow_euclidean_connections=True, all
elif allow_manhattan_connections and not allow_euclidean_connections and not all(diff) and any(diff):
graph.add_edge(a, b)
return graph
if __name__ == '__main__':
parsed_level = parse_level(Path(__file__).parent / 'factory' / 'levels' / 'simple.txt')
y = one_hot_level(parsed_level)
print(np.argwhere(y == 0))

View File

@ -1,5 +1,6 @@
import pickle
from collections import defaultdict
from os import PathLike
from pathlib import Path
from typing import List, Dict, Union
@ -9,14 +10,17 @@ from environments.helpers import IGNORED_DF_COLUMNS
import pandas as pd
from plotting.compare_runs import plot_single_run
class EnvMonitor(BaseCallback):
ext = 'png'
def __init__(self, env):
def __init__(self, env, filepath: Union[str, PathLike] = None):
super(EnvMonitor, self).__init__()
self.unwrapped = env
self._filepath = filepath
self._monitor_df = pd.DataFrame()
self._monitor_dicts = defaultdict(dict)
@ -43,7 +47,7 @@ class EnvMonitor(BaseCallback):
self._read_info(env_idx, info)
for env_idx, done in list(
enumerate(self.locals.get('dones', []))) + list(enumerate(self.locals.get('done', []))):
enumerate(self.locals.get('dones', []))): # + list(enumerate(self.locals.get('done', []))):
self._read_done(env_idx, done)
return True
@ -67,8 +71,10 @@ class EnvMonitor(BaseCallback):
pass
return
def save_run(self, filepath: Union[Path, str]):
def save_run(self, filepath: Union[Path, str], auto_plotting_keys=None):
filepath = Path(filepath)
filepath.parent.mkdir(exist_ok=True, parents=True)
with filepath.open('wb') as f:
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if auto_plotting_keys:
plot_single_run(filepath, column_keys=auto_plotting_keys)

View File

@ -24,14 +24,12 @@ class EnvRecorder(BaseCallback):
self._entities = [entities]
else:
self._entities = entities
self.started = False
self.closed = False
def __getattr__(self, item):
return getattr(self.unwrapped, item)
def reset(self):
self.unwrapped._record_episodes = True
self.unwrapped.start_recording()
return self.unwrapped.reset()
def _on_training_start(self) -> None:
@ -57,10 +55,18 @@ class EnvRecorder(BaseCallback):
else:
pass
def step(self, actions):
step_result = self.unwrapped.step(actions)
# 0, 1, 2 , 3 = idx
# _, _, done_bool, info_obj = step_result
self._read_info(0, step_result[3])
self._read_done(0, step_result[2])
return step_result
def save_records(self, filepath: Union[Path, str], save_occupation_map=False, save_trajectory_map=False):
filepath = Path(filepath)
filepath.parent.mkdir(exist_ok=True, parents=True)
# self.out_file.unlink(missing_ok=True)
# cls.out_file.unlink(missing_ok=True)
with filepath.open('w') as f:
out_dict = {'episodes': self._recorder_out_list, 'header': self.unwrapped.params}
try:

View File

@ -17,13 +17,15 @@ class MovementProperties(NamedTuple):
class ObservationProperties(NamedTuple):
# Todo: Add Description
render_agents: AgentRenderOptions = AgentRenderOptions.SEPERATE
omit_agent_self: bool = True
additional_agent_placeholder: Union[None, str, int] = None
cast_shadows = True
cast_shadows: bool = True
frames_to_stack: int = 0
pomdp_r: int = 0
show_global_position_info: bool = True
indicate_door_area: bool = False
show_global_position_info: bool = False
class MarlFrameStack(gym.ObservationWrapper):
@ -34,4 +36,3 @@ class MarlFrameStack(gym.ObservationWrapper):
if isinstance(self.env, FrameStack) and self.env.unwrapped.n_agents > 1:
return observation[0:].swapaxes(0, 1)
return observation

View File

@ -0,0 +1,119 @@
import warnings
from pathlib import Path
import yaml
from stable_baselines3 import PPO
from environments.factory.factory_dirt import DirtProperties, DirtFactory, RewardsDirt
from environments.logging.envmonitor import EnvMonitor
from environments.logging.recorder import EnvRecorder
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
from environments.factory.factory_dirt import Constants as c
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
TRAIN_AGENT = True
LOAD_AND_REPLAY = True
record = True
render = False
study_root_path = Path(__file__).parent.parent / 'experiment_out'
parameter_path = Path(__file__).parent.parent / 'environments' / 'factory' / 'levels' / 'parameters' / 'DirtyFactory-v0.yaml'
save_path = study_root_path / f'model.zip'
# Output folder
study_root_path.mkdir(parents=True, exist_ok=True)
train_steps = 2*1e5
frames_to_stack = 0
u = dict(
show_global_position_info=True,
pomdp_r=3,
cast_shadows=True,
allow_diagonal_movement=False,
parse_doors=True,
doors_have_area=False,
done_at_collision=True
)
obs_props = ObservationProperties(render_agents=AgentRenderOptions.SEPERATE,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=u['pomdp_r'], cast_shadows=u['cast_shadows'],
show_global_position_info=u['show_global_position_info'])
move_props = MovementProperties(allow_diagonal_movement=u['allow_diagonal_movement'],
allow_square_movement=True,
allow_no_op=False)
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
clean_amount=0.34,
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0)
rewards_dirt = RewardsDirt(CLEAN_UP_FAIL=-0.5, CLEAN_UP_VALID=1, CLEAN_UP_LAST_PIECE=5)
factory_kwargs = dict(n_agents=1, max_steps=500, parse_doors=u['parse_doors'],
level_name='rooms', doors_have_area=u['doors_have_area'],
verbose=True,
mv_prop=move_props,
obs_prop=obs_props,
rewards_dirt=rewards_dirt,
done_at_collision=u['done_at_collision']
)
# with (parameter_path).open('r') as f:
# factory_kwargs = yaml.load(f, Loader=yaml.FullLoader)
# factory_kwargs.update(n_agents=1, done_at_collision=False, verbose=True)
if TRAIN_AGENT:
env = DirtFactory(**factory_kwargs)
callbacks = EnvMonitor(env)
obs_shape = env.observation_space.shape
model = PPO("MlpPolicy", env, verbose=1, device='cpu')
model.learn(total_timesteps=train_steps, callback=callbacks)
callbacks.save_run(study_root_path / 'monitor.pick', auto_plotting_keys=['step_reward', 'collision'] + ['cleanup_valid', 'cleanup_fail']) # + env_plot_keys)
model.save(save_path)
if LOAD_AND_REPLAY:
with DirtFactory(**factory_kwargs) as env:
env = EnvMonitor(env)
env = EnvRecorder(env) if record else env
obs_shape = env.observation_space.shape
model = PPO.load(save_path)
# Evaluation Loop for i in range(n Episodes)
for episode in range(10):
env_state = env.reset()
rew, done_bool = 0, False
while not done_bool:
actions = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env.step(actions)
rew += step_r
if render:
env.render()
try:
door = next(x for x in env.unwrapped.unwrapped.unwrapped[c.DOORS] if x.is_open)
print('openDoor found')
except StopIteration:
pass
if done_bool:
break
print(
f'Factory run {episode} done, steps taken {env.unwrapped.unwrapped.unwrapped._steps}, reward is:\n {rew}')
env.save_records(study_root_path / 'reload_recorder.pick', save_occupation_map=False)
#env.save_run(study_root_path / 'reload_monitor.pick',
# auto_plotting_keys=['step_reward', 'cleanup_valid', 'cleanup_fail'])

View File

@ -10,6 +10,45 @@ from environments.helpers import IGNORED_DF_COLUMNS, MODEL_MAP
from plotting.plotting import prepare_plot
def plot_single_run(run_path: Union[str, PathLike], use_tex: bool = False, column_keys=None):
run_path = Path(run_path)
df_list = list()
if run_path.is_dir():
monitor_file = next(run_path.glob('*monitor*.pick'))
elif run_path.exists() and run_path.is_file():
monitor_file = run_path
else:
raise ValueError
with monitor_file.open('rb') as f:
monitor_df = pickle.load(f)
monitor_df = monitor_df.fillna(0)
df_list.append(monitor_df)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0).rename(columns={'episode': 'Episode'}).sort_values(['Episode'])
if column_keys is not None:
columns = [col for col in column_keys if col in df.columns]
else:
columns = [col for col in df.columns if col not in IGNORED_DF_COLUMNS]
roll_n = 50
non_overlapp_window = df.groupby(['Episode']).rolling(roll_n, min_periods=1).mean()
df_melted = df[columns + ['Episode']].reset_index().melt(id_vars=['Episode'],
value_vars=columns, var_name="Measurement",
value_name="Score")
if df_melted['Episode'].max() > 800:
skip_n = round(df_melted['Episode'].max() * 0.02)
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
prepare_plot(run_path.parent / f'{run_path.parent.name}_monitor_lineplot.png', df_melted, use_tex=use_tex)
print('Plotting done.')
def compare_seed_runs(run_path: Union[str, PathLike], use_tex: bool = False):
run_path = Path(run_path)
df_list = list()
@ -37,7 +76,10 @@ def compare_seed_runs(run_path: Union[str, PathLike], use_tex: bool = False):
skip_n = round(df_melted['Episode'].max() * 0.02)
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted, use_tex=use_tex)
if run_path.is_dir():
prepare_plot(run_path / f'{run_path}_monitor_lineplot.png', df_melted, use_tex=use_tex)
elif run_path.exists() and run_path.is_file():
prepare_plot(run_path.parent / f'{run_path.parent}_monitor_lineplot.png', df_melted, use_tex=use_tex)
print('Plotting done.')

View File

@ -1,4 +1,5 @@
import seaborn as sns
import matplotlib as mpl
from matplotlib import pyplot as plt
PALETTE = 10 * (
@ -21,7 +22,14 @@ PALETTE = 10 * (
def plot(filepath, ext='png'):
plt.tight_layout()
figure = plt.gcf()
ax = plt.gca()
legends = [c for c in ax.get_children() if isinstance(c, mpl.legend.Legend)]
if legends:
figure.savefig(str(filepath), format=ext, bbox_extra_artists=(*legends,), bbox_inches='tight')
else:
figure.savefig(str(filepath), format=ext)
plt.show()
plt.clf()
@ -30,7 +38,7 @@ def prepare_tex(df, hue, style, hue_order):
sns.set(rc={'text.usetex': True}, style='whitegrid')
lineplot = sns.lineplot(data=df, x='Episode', y='Score', ci=95, palette=PALETTE,
hue_order=hue_order, hue=hue, style=style)
# lineplot.set_title(f'{sorted(list(df["Measurement"].unique()))}')
lineplot.set_title(f'{sorted(list(df["Measurement"].unique()))}')
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.tight_layout()
return lineplot
@ -48,6 +56,19 @@ def prepare_plt(df, hue, style, hue_order):
return lineplot
def prepare_center_double_column_legend(df, hue, style, hue_order):
print('Struggling to plot Figure using LaTeX - going back to normal.')
plt.close('all')
sns.set(rc={'text.usetex': False}, style='whitegrid')
fig = plt.figure(figsize=(10, 11))
lineplot = sns.lineplot(data=df, x='Episode', y='Score', hue=hue, style=style,
ci=95, palette=PALETTE, hue_order=hue_order, legend=False)
# plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
lineplot.legend(hue_order, ncol=3, loc='lower center', title='Parameter Combinations', bbox_to_anchor=(0.5, -0.43))
plt.tight_layout()
return lineplot
def prepare_plot(filepath, results_df, ext='png', hue='Measurement', style=None, use_tex=False):
df = results_df.copy()
df[hue] = df[hue].str.replace('_', '-')

View File

@ -1,13 +1,13 @@
import warnings
from pathlib import Path
import numpy as np
import yaml
from stable_baselines3 import A2C, PPO, DQN
from environments.factory.factory_dirt import Constants as c
from environments import helpers as h
from environments.helpers import Constants as c
from environments.factory.factory_dirt import DirtFactory
from environments.factory.combined_factories import DirtItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.logging.recorder import EnvRecorder
warnings.filterwarnings('ignore', category=FutureWarning)
@ -18,39 +18,41 @@ if __name__ == '__main__':
determin = False
render = True
record = True
seed = 67
record = False
verbose = True
seed = 13
n_agents = 1
out_path = Path('study_out/e_1_new_reward/no_obs/dirt/A2C_new_reward/0_A2C_new_reward')
out_path_2 = Path('study_out/e_1_obs_stack_3_gae_0.25_n_steps_16/seperate_N/dirt/A2C_obs_stack_3_gae_0.25_n_steps_16/1_A2C_obs_stack_3_gae_0.25_n_steps_16')
# out_path = Path('study_out/e_1_new_reward/no_obs/dirt/A2C_new_reward/0_A2C_new_reward')
out_path = Path('study_out/reload')
model_path = out_path
with (out_path / f'env_params.json').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env_kwargs.update(additional_agent_placeholder=None, n_agents=n_agents, max_steps=150)
if gain_amount := env_kwargs.get('dirt_prop', {}).get('gain_amount', None):
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
del env_kwargs['dirt_prop']['gain_amount']
env_kwargs.update(record_episodes=record, done_at_collision=True)
env_kwargs.update(n_agents=n_agents, done_at_collision=False, verbose=verbose)
this_model = out_path / 'model.zip'
other_model = out_path / 'model.zip'
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in out_path.parent.name)
models = [model_cls.load(this_model)] # , model_cls.load(other_model)]
model_cls = PPO # next(val for key, val in h.MODEL_MAP.items() if key in out_path.parent.name)
models = [model_cls.load(this_model)]
try:
# Legacy Cleanups
del env_kwargs['dirt_prop']['agent_can_interact']
env_kwargs['verbose'] = True
except KeyError:
pass
# Init Env
with DirtFactory(**env_kwargs) as env:
env = EnvRecorder(env)
env = EnvMonitor(env)
env = EnvRecorder(env) if record else env
obs_shape = env.observation_space.shape
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
for episode in range(500):
env_state = env.reset()
rew, done_bool = 0, False
while not done_bool:
if n_agents > 1:
actions = [model.predict(env_state[model_idx], deterministic=True)[0]
actions = [model.predict(env_state[model_idx], deterministic=determin)[0]
for model_idx, model in enumerate(models)]
else:
actions = models[0].predict(env_state, deterministic=determin)[0]
@ -59,7 +61,17 @@ if __name__ == '__main__':
rew += step_r
if render:
env.render()
try:
door = next(x for x in env.unwrapped.unwrapped[c.DOORS] if x.is_open)
print('openDoor found')
except StopIteration:
pass
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
print(f'Factory run {episode} done, steps taken {env.unwrapped.unwrapped._steps}, reward is:\n {rew}')
env.save_run(out_path / 'reload_monitor.pick',
auto_plotting_keys=['step_reward', 'cleanup_valid', 'cleanup_fail'])
if record:
env.save_records(out_path / 'reload_recorder.pick', save_occupation_map=True)
print('all done')

View File

@ -1,12 +1,14 @@
numpy
scipy
tqdm
pandas
seaborn>=0.11.1
matplotlib>=3.4.1
matplotlib>=3.3.4
stable-baselines3>=1.0
pygame>=2.1.0
gym>=0.18.0
networkx>=2.6.1
networkx>=2.6.3
simplejson>=3.17.5
PyYAML>=6.0
git+https://github.com/facebookresearch/salina.git@main#egg=salina
einops
natsort

View File

@ -1,7 +1,6 @@
import sys
from pathlib import Path
from matplotlib import pyplot as plt
import numpy as np
import itertools as it
try:
@ -16,8 +15,6 @@ except NameError:
DIR = None
pass
import time
import simplejson
from stable_baselines3.common.vec_env import SubprocVecEnv
@ -28,14 +25,12 @@ from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
from plotting.compare_runs import compare_seed_runs, compare_model_runs
import pandas as pd
import seaborn as sns
import multiprocessing as mp
# mp.set_start_method("spawn")
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -72,7 +67,6 @@ n_agents = 4
ood_monitor_file = f'e_1_{n_agents}_agents'
baseline_monitor_file = 'e_1_baseline'
from stable_baselines3 import A2C
def policy_model_kwargs():
return dict() # gae_lambda=0.25, n_steps=16, max_grad_norm=0.25, use_rms_prop=True)
@ -198,7 +192,7 @@ if __name__ == '__main__':
ood_run = True
plotting = True
train_steps = 1e7
train_steps = 1e6
n_seeds = 3
frames_to_stack = 3
@ -222,7 +216,7 @@ if __name__ == '__main__':
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0, agent_can_interact=True)
item_props = ItemProperties(n_items=10, agent_can_interact=True,
item_props = ItemProperties(n_items=10,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
@ -434,8 +428,8 @@ if __name__ == '__main__':
# Iteration
start_mp_baseline_run(env_map, policy_path)
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(seed_path)
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(policy_path)
print('Baseline Tracking done')
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
@ -448,11 +442,11 @@ if __name__ == '__main__':
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# FIXME: Pick random seed or iterate over available seeds
# First seed path version
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# policy_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
start_mp_study_run(env_map, policy_path)
#for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(seed_path, env_map[env_path.name][0], observation_modes[obs_mode])
#for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(policy_path, env_map[env_path.name][0], observation_modes[obs_mode])
print('OOD Tracking Done')
# Plotting

View File

@ -0,0 +1,23 @@
from algorithms.utils import Checkpointer
from pathlib import Path
from algorithms.utils import load_yaml_file, add_env_props, instantiate_class, load_class
#from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC
for i in range(0, 5):
for name in ['snac', 'mappo', 'iac', 'seac']:
study_root = Path(__file__).parent / name
cfg = load_yaml_file(study_root / f'{name}.yaml')
add_env_props(cfg)
env = instantiate_class(cfg['env'])
net = instantiate_class(cfg['agent'])
max_steps = cfg['algorithm']['max_steps']
n_steps = cfg['algorithm']['n_steps']
checkpointer = Checkpointer(f'{name}#{i}', study_root, cfg, max_steps, 50)
loop = load_class(cfg['method'])(cfg)
df = loop.train_loop(checkpointer)

View File

@ -0,0 +1,22 @@
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
dfs = []
for name in ['mappo']:
for c in range(5):
try:
study_root = Path(__file__).parent / name / f'{name}#{c}'
print(study_root)
df = pd.read_csv(study_root / 'results.csv', index_col=False)
df.reward = df.reward.rolling(100).mean()
df['method'] = name.upper()
dfs.append(df)
except Exception as e:
pass
df = pd.concat(dfs).reset_index()
sns.lineplot(data=df, x='steps', y='reward', hue='method', palette='husl', ci='sd', linewidth=1.5, err_style='bars')
plt.savefig('study.png')
print('saved image')

View File

@ -1,139 +0,0 @@
from salina.agents.gyma import AutoResetGymAgent
from salina.agents import Agents, TemporalAgent
from salina.rl.functional import _index, gae
import torch
import torch.nn as nn
from torch.distributions import Categorical
from salina import TAgent, Workspace, get_arguments, get_class, instantiate_class
from pathlib import Path
import numpy as np
from tqdm import tqdm
import time
from algorithms.utils import (
add_env_props,
load_yaml_file,
CombineActionsAgent,
AutoResetGymMultiAgent,
access_str,
AGENT_PREFIX, REWARD, CUMU_REWARD, OBS, SEP
)
class A2CAgent(TAgent):
def __init__(self, observation_size, hidden_size, n_actions, agent_id):
super().__init__()
observation_size = np.prod(observation_size)
print(observation_size)
self.agent_id = agent_id
self.model = nn.Sequential(
nn.Flatten(),
nn.Linear(observation_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU(),
nn.Linear(hidden_size, hidden_size),
nn.ELU()
)
self.action_head = nn.Linear(hidden_size, n_actions)
self.critic_head = nn.Linear(hidden_size, 1)
def get_obs(self, t):
observation = self.get((f'env/{access_str(self.agent_id, OBS)}', t))
return observation
def forward(self, t, stochastic, **kwargs):
observation = self.get_obs(t)
features = self.model(observation)
scores = self.action_head(features)
probs = torch.softmax(scores, dim=-1)
critic = self.critic_head(features).squeeze(-1)
if stochastic:
action = torch.distributions.Categorical(probs).sample()
else:
action = probs.argmax(1)
self.set((f'{access_str(self.agent_id, "action")}', t), action)
self.set((f'{access_str(self.agent_id, "action_probs")}', t), probs)
self.set((f'{access_str(self.agent_id, "critic")}', t), critic)
if __name__ == '__main__':
# Setup workspace
uid = time.time()
workspace = Workspace()
n_agents = 2
# load config
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
add_env_props(cfg)
cfg['env'].update({'n_agents': n_agents})
# instantiate agent and env
env_agent = AutoResetGymMultiAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
)
a2c_agents = [instantiate_class({**cfg['agent'],
'agent_id': agent_id})
for agent_id in range(n_agents)]
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, *a2c_agents, CombineActionsAgent()))
acquisition_agent.seed(69)
# optimizers & other parameters
cfg_optim = cfg['algorithm']['optimizer']
optimizers = [get_class(cfg_optim)(a2c_agent.parameters(), **get_arguments(cfg_optim))
for a2c_agent in a2c_agents]
n_timesteps = cfg['algorithm']['n_timesteps']
# Decision making loop
best = -float('inf')
with tqdm(range(int(cfg['algorithm']['max_epochs'] / n_timesteps))) as pbar:
for epoch in pbar:
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent(workspace, t=1, n_steps=n_timesteps-1, stochastic=True)
else:
acquisition_agent(workspace, t=0, n_steps=n_timesteps, stochastic=True)
for agent_id in range(n_agents):
critic, done, action_probs, reward, action = workspace[
access_str(agent_id, 'critic'),
"env/done",
access_str(agent_id, 'action_probs'),
access_str(agent_id, 'reward', 'env/'),
access_str(agent_id, 'action')
]
td = gae(critic, reward, done, 0.98, 0.25)
td_error = td ** 2
critic_loss = td_error.mean()
entropy_loss = Categorical(action_probs).entropy().mean()
action_logp = _index(action_probs, action).log()
a2c_loss = action_logp[:-1] * td.detach()
a2c_loss = a2c_loss.mean()
loss = (
-0.001 * entropy_loss
+ 1.0 * critic_loss
- 0.1 * a2c_loss
)
optimizer = optimizers[agent_id]
optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(a2c_agents[agent_id].parameters(), .5)
optimizer.step()
# Compute the cumulated reward on final_state
rews = ''
for agent_i in range(n_agents):
creward = workspace['env/'+access_str(agent_i, CUMU_REWARD)]
creward = creward[done]
if creward.size()[0] > 0:
rews += f'{AGENT_PREFIX}{agent_i}: {creward.mean().item():.2f} | '
"""if cum_r > best:
torch.save(a2c_agent.state_dict(), Path(__file__).parent / f'agent_{uid}.pt')
best = cum_r"""
pbar.set_description(rews, refresh=True)

View File

@ -1,27 +0,0 @@
agent:
classname: studies.sat_mad.A2CAgent
observation_size: 4*5*5
hidden_size: 128
n_actions: 10
env:
classname: environments.factory.make
env_name: "DirtyFactory-v0"
n_agents: 1
pomdp_r: 2
max_steps: 400
stack_n_frames: 3
individual_rewards: True
algorithm:
max_epochs: 1000000
n_envs: 1
n_timesteps: 10
discount_factor: 0.99
entropy_coef: 0.01
critic_coef: 1.0
gae: 0.25
optimizer:
classname: torch.optim.Adam
lr: 0.0003
weight_decay: 0.0

View File

@ -0,0 +1,266 @@
import itertools
import sys
from pathlib import Path
from stable_baselines3.common.vec_env import SubprocVecEnv
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(DIR.parent))
__package__ = DIR.name
else:
DIR = None
except NameError:
DIR = None
pass
import simplejson
from environments.helpers import ActionTranslator, ObservationTranslator
from environments.logging.recorder import EnvRecorder
from environments import helpers as h
from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.factory.factory_dest import DestProperties, DestFactory, DestModeOptions
from environments.factory.combined_factories import DirtDestItemFactory
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
"""
In this studie, we want to export trained Agents for debugging purposes.
"""
def encapsule_env_factory(env_fctry, env_kwrgs):
def _init():
with env_fctry(**env_kwrgs) as init_env:
return init_env
return _init
def load_model_run_baseline(policy_path, env_to_run):
# retrieve model class
model_cls = h.MODEL_MAP['A2C']
# Load both agents
model = model_cls.load(policy_path / 'model.zip', device='cpu')
# Load old env kwargs
with next(policy_path.glob('*params.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Init Env
with env_to_run(**env_kwargs) as env_factory:
monitored_env_factory = EnvMonitor(env_factory)
recorded_env_factory = EnvRecorder(monitored_env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(5):
env_state = recorded_env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = recorded_env_factory.step(action)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
recorded_env_factory.save_run(filepath=policy_path / f'baseline_monitor.pick')
recorded_env_factory.save_records(filepath=policy_path / f'baseline_recorder.json')
def load_model_run_combined(root_path, env_to_run, env_kwargs):
# retrieve model class
model_cls = h.MODEL_MAP['A2C']
# Load both agents
models = [model_cls.load(model_zip, device='cpu') for model_zip in root_path.rglob('model.zip')]
# Load old env kwargs
env_kwargs = env_kwargs.copy()
env_kwargs.update(
n_agents=len(models),
done_at_collision=False)
# Init Env
with env_to_run(**env_kwargs) as env_factory:
action_translator = ActionTranslator(env_factory.named_action_space,
*[x.named_action_space for x in models])
observation_translator = ObservationTranslator(env_factory.observation_space.shape[-2:],
env_factory.named_observation_space,
*[x.named_observation_space for x in models])
env = EnvMonitor(env_factory)
# Evaluation Loop for i in range(n Episodes)
for episode in range(5):
env_state = env.reset()
rew, done_bool = 0, False
while not done_bool:
translated_observations = observation_translator(env_state)
actions = [model.predict(translated_observations[model_idx], deterministic=True)[0]
for model_idx, model in enumerate(models)]
translated_actions = action_translator(actions)
env_state, step_r, done_bool, info_obj = env.step(translated_actions)
rew += step_r
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
env.save_run(filepath=root_path / f'monitor_combined.pick')
# env.save_records(filepath=root_path / f'recorder_combined.json')
if __name__ == '__main__':
# What to do:
train = True
individual_run = False
combined_run = False
multi_env = False
train_steps = 1e6
frames_to_stack = 3
# Define a global studi save path
paremters_of_interest = dict(
show_global_position_info=[True, False],
pomdp_r=[3],
cast_shadows=[True, False],
allow_diagonal_movement=[True],
parse_doors=[True, False],
doors_have_area=[True, False],
done_at_collision=[True, False]
)
keys, vals = zip(*paremters_of_interest.items())
# Then we find all permutations for those values
p = list(itertools.product(*vals))
# Finally we can create out list of dicts
result = [{keys[index]: entry[index] for index in range(len(entry))} for entry in p]
for u in result:
file_name = '_'.join('_'.join([str(y)[0] for y in x]) for x in u.items())
study_root_path = Path(__file__).parent.parent / 'study_out' / file_name
# Model Kwargs
policy_model_kwargs = dict(ent_coef=0.01)
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=frames_to_stack,
pomdp_r=u['pomdp_r'], cast_shadows=u['cast_shadows'],
show_global_position_info=u['show_global_position_info'])
move_props = MovementProperties(allow_diagonal_movement=u['allow_diagonal_movement'],
allow_square_movement=True,
allow_no_op=False)
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
clean_amount=0.34,
max_spawn_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
dirt_smear_amount=0.0)
item_props = ItemProperties(n_items=10, spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
dest_props = DestProperties(n_dests=4, spawn_mode=DestModeOptions.GROUPED, spawn_frequency=1)
factory_kwargs = dict(n_agents=1, max_steps=500, parse_doors=u['parse_doors'],
level_name='rooms', doors_have_area=u['doors_have_area'],
verbose=False,
mv_prop=move_props,
obs_prop=obs_props,
done_at_collision=u['done_at_collision']
)
# Bundle both environments with global kwargs and parameters
env_map = {}
env_map.update({'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
**factory_kwargs.copy()),
['cleanup_valid', 'cleanup_fail'])})
# env_map.update({'item': (ItemFactory, dict(item_prop=item_props,
# **factory_kwargs.copy()),
# ['DROPOFF_FAIL', 'ITEMACTION_FAIL', 'DROPOFF_VALID', 'ITEMACTION_VALID'])})
# env_map.update({'dest': (DestFactory, dict(dest_prop=dest_props,
# **factory_kwargs.copy()))})
env_map.update({'combined': (DirtDestItemFactory, dict(dest_prop=dest_props,
item_prop=item_props,
dirt_prop=dirt_props,
**factory_kwargs.copy()))})
env_names = list(env_map.keys())
# Train starts here ############################################################
# Build Major Loop parameters, parameter versions, Env Classes and models
if train:
for env_key in (env_key for env_key in env_map if 'combined' != env_key):
model_cls = h.MODEL_MAP['PPO']
combination_path = study_root_path / env_key
env_class, env_kwargs, env_plot_keys = env_map[env_key]
# Output folder
if (combination_path / 'monitor.pick').exists():
continue
combination_path.mkdir(parents=True, exist_ok=True)
if not multi_env:
env_factory = encapsule_env_factory(env_class, env_kwargs)()
else:
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
for _ in range(6)], start_method="spawn")
param_path = combination_path / f'env_params.json'
try:
env_factory.env_method('save_params', param_path)
except AttributeError:
env_factory.save_params(param_path)
# EnvMonitor Init
callbacks = [EnvMonitor(env_factory)]
# Model Init
model = model_cls("MlpPolicy", env_factory, **policy_model_kwargs,
verbose=1, seed=69, device='cpu')
# Model train
model.learn(total_timesteps=int(train_steps), callback=callbacks)
# Model save
try:
model.named_action_space = env_factory.unwrapped.named_action_space
model.named_observation_space = env_factory.unwrapped.named_observation_space
except AttributeError:
model.named_action_space = env_factory.get_attr("named_action_space")[0]
model.named_observation_space = env_factory.get_attr("named_observation_space")[0]
save_path = combination_path / f'model.zip'
model.save(save_path)
# Monitor Save
callbacks[0].save_run(combination_path / 'monitor.pick',
auto_plotting_keys=['step_reward', 'collision'] + env_plot_keys)
# Better be save then sorry: Clean up!
del env_factory, model
import gc
gc.collect()
# Train ends here ############################################################
# Evaluation starts here #####################################################
# First Iterate over every model and monitor "as trained"
if individual_run:
print('Start Individual Recording')
for env_key in (env_key for env_key in env_map if 'combined' != env_key):
# For trained policy in study_root_path / identifier
policy_path = study_root_path / env_key
load_model_run_baseline(policy_path, env_map[policy_path.name][0])
# for policy_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(policy_path)
print('Done Individual Recording')
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
if combined_run:
print('Start combined run')
for env_key in (env_key for env_key in env_map if 'combined' == env_key):
# For trained policy in study_root_path / identifier
factory, kwargs = env_map[env_key]
load_model_run_combined(study_root_path, factory, kwargs)
print('OOD Tracking Done')

36
studies/viz_policy.py Normal file
View File

@ -0,0 +1,36 @@
import pandas as pd
from algorithms.marl import LoopSNAC, LoopIAC, LoopSEAC
from pathlib import Path
from algorithms.utils import load_yaml_file
from tqdm import trange
study = 'example_config#0'
#study_root = Path(__file__).parent / study
study_root = Path('/Users/romue/PycharmProjects/EDYS/algorithms/marl/')
#['L2NoAh_gru', 'L2NoCh_gru', 'nomix_gru']:
render = True
eval_eps = 3
for run in range(0, 5):
for name in ['example_config']:#['L2OnlyAh_gru', 'L2OnlyChAh_gru', 'L2OnlyMix_gru']: #['layernorm_gru', 'basic_gru', 'nonorm_gru', 'spectralnorm_gru']:
cfg = load_yaml_file(study_root / study / 'config.yaml')
#p_root = Path(study_root / study / f'{name}#{run}')
dfs = []
for i in trange(500):
path = study_root / study / f'checkpoint_{161}'
print(path)
snac = LoopSEAC(cfg)
snac.load_state_dict(path)
snac.eval()
df = snac.eval_loop(render=render, n_episodes=eval_eps)
df['checkpoint'] = i
dfs.append(df)
results = pd.concat(dfs)
results['run'] = run
results.to_csv(p_root / 'results.csv', index=False)
#sns.lineplot(data=results, x='checkpoint', y='reward', hue='agent', palette='husl')
#plt.savefig(f'{experiment_name}.png')

View File

@ -1,39 +0,0 @@
from salina.agents import Agents, TemporalAgent
import torch
from salina import Workspace, get_arguments, get_class, instantiate_class
from pathlib import Path
from salina.agents.gyma import GymAgent
import time
from algorithms.utils import load_yaml_file, add_env_props
if __name__ == '__main__':
# Setup workspace
uid = time.time()
workspace = Workspace()
weights = Path('/Users/romue/PycharmProjects/EDYS/studies/agent_1636994369.145843.pt')
cfg = load_yaml_file(Path(__file__).parent / 'sat_mad.yaml')
add_env_props(cfg)
cfg['env'].update({'n_agents': 2})
# instantiate agent and env
env_agent = GymAgent(
get_class(cfg['env']),
get_arguments(cfg['env']),
n_envs=1
)
agents = []
for _ in range(2):
a2c_agent = instantiate_class(cfg['agent'])
if weights:
a2c_agent.load_state_dict(torch.load(weights))
agents.append(a2c_agent)
# combine agents
acquisition_agent = TemporalAgent(Agents(env_agent, *agents))
acquisition_agent.seed(42)
acquisition_agent(workspace, t=0, n_steps=400, stochastic=False, save_render=True)