first icm steps

This commit is contained in:
romue 2021-07-30 14:01:09 +02:00
parent aebe3b2f60
commit ebf49cadea
6 changed files with 61 additions and 35 deletions

View File

@ -24,7 +24,7 @@ class BaseLearner:
self.n_agents = n_agents
self.n_grad_steps = n_grad_steps
self.train_every = train_every
self.stack_n_frames = deque(stack_n_frames)
self.stack_n_frames = deque(maxlen=stack_n_frames)
self.device = 'cpu'
self.n_updates = 0
self.step = 0
@ -51,6 +51,9 @@ class BaseLearner:
def on_episode_end(self, n_steps):
pass
def on_all_done(self):
pass
def train(self):
pass
@ -93,6 +96,7 @@ class BaseLearner:
f' eps: {self.eps:.4f}\tRunning loss: {sum(list(self.running_loss)) / len(self.running_loss):.4f}\tUpdates:{self.n_updates}')
except Exception as e:
pass
self.on_all_done()
class BaseBuffer:
@ -180,18 +184,17 @@ class BaseDDQN(BaseDQN):
return values + (advantages - advantages.mean())
class QTRANtestNet(nn.Module):
def __init__(self, backbone_dims=[3*5*5, 64, 64], q_head=[64, 9]):
super(QTRANtestNet, self).__init__()
self.backbone = mlp_maker(backbone_dims, flatten=True, activation_last='elu')
self.q_head = mlp_maker(q_head)
class BaseICM(nn.Module):
def __init__(self, backbone_dims=[2*3*5*5, 64, 64], head_dims=[2*64, 64, 9]):
super(BaseICM, self).__init__()
self.backbone = mlp_maker(backbone_dims, flatten=True)
self.icm = mlp_maker(head_dims)
self.ce = nn.CrossEntropyLoss()
def forward(self, x):
features = self.backbone(x)
qs = self.q_head(features)
return qs, features
@torch.no_grad()
def act(self, x) -> np.ndarray:
action = self.forward(x)[0].max(-1)[1].numpy()
return action
def forward(self, s0, s1, a):
phi_s0 = self.backbone(s0)
phi_s1 = self.backbone(s1)
cat = torch.cat((phi_s0, phi_s1), dim=1)
a_prime = torch.softmax(self.icm(cat), dim=-1)
ce = self.ce(a_prime, a)
return dict(prediction=a_prime, loss=ce)

View File

@ -51,3 +51,21 @@ class MQLearner(QLearner):
# Compute loss
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - m_q_target, 2))
self._backprop_loss(loss)
from tqdm import trange
class MQICMLearner(MQLearner):
def __init__(self, *args, icm, **kwargs):
super(MQICMLearner, self).__init__(*args, **kwargs)
self.icm = icm
self.icm_optimizer = torch.optim.Adam(self.icm.parameters())
def on_all_done(self):
for b in trange(50000):
batch = self.buffer.sample(128, 0)
s0, s1, a = batch.observation, batch.next_observation, batch.action
loss = self.icm(s0, s1, a.squeeze())['loss']
self.icm_optimizer.zero_grad()
loss.backward()
self.icm_optimizer.step()
if b%100 == 0:
print(loss.item())

View File

@ -100,32 +100,28 @@ class QLearner(BaseLearner):
if __name__ == '__main__':
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
from algorithms.common import BaseDDQN
from algorithms.m_q_learner import MQLearner
from algorithms.common import BaseDDQN, BaseICM
from algorithms.m_q_learner import MQLearner, MQICMLearner
from algorithms.vdn_learner import VDNLearner
from algorithms.udr_learner import UDRLearner
N_AGENTS = 1
dirt_props = DirtProperties(clean_amount=1, gain_amount=0.1, max_global_amount=20,
max_local_amount=1, spawn_frequency=5, max_spawn_ratio=0.05,
dirt_smear_amount=0.0)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400, parse_doors=False,
movement_properties=move_props, level_name='rooms', frames_to_stack=0,
omit_agent_slice_in_obs=True, combin_agent_slices_in_obs=True, record_episodes=False
)
with (Path(f'../environments/factory/env_default_param.yaml')).open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env = SimpleFactory(**env_kwargs)
obs_shape = np.prod(env.observation_space.shape)
n_actions = env.action_space.n
dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu'),\
BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu')
dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu'),\
BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128, 1], activation='leaky_relu')
learner = MQLearner(dqn, target_dqn, env, 50000, target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64, weight_decay=1e-3)
icm = BaseICM(backbone_dims=[obs_shape, 64, 32], head_dims=[2*32, 64, n_actions])
learner = MQICMLearner(dqn, target_dqn, env, 50000, icm=icm,
target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25,
batch_size=64, weight_decay=1e-3
)
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
learner.learn(100000)

View File

@ -15,7 +15,7 @@ class Entity(NamedTuple):
value_operation: str = 'none'
state: str = None
id: int = 0
aux:Any=None
aux: Any = None
class Renderer:

0
studies/__init__.py Normal file
View File

9
studies/sat_mad.py Normal file
View File

@ -0,0 +1,9 @@
import numpy as np
class SatMad(object):
def __init__(self):
pass
if __name__ == '__main__':
pass