experiment 1 running
This commit is contained in:
parent
696e520862
commit
db4dbc13ae
@ -2,9 +2,9 @@ import warnings
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import yaml
|
import yaml
|
||||||
from natsort import natsorted
|
|
||||||
from environments import helpers as h
|
|
||||||
|
|
||||||
|
from environments import helpers as h
|
||||||
|
from environments.factory.factory_dirt import DirtFactory
|
||||||
from environments.factory.factory_dirt_item import DirtItemFactory
|
from environments.factory.factory_dirt_item import DirtItemFactory
|
||||||
from environments.logging.recorder import RecorderCallback
|
from environments.logging.recorder import RecorderCallback
|
||||||
|
|
||||||
@ -17,21 +17,23 @@ if __name__ == '__main__':
|
|||||||
model_name = 'PPO_1631187073'
|
model_name = 'PPO_1631187073'
|
||||||
run_id = 0
|
run_id = 0
|
||||||
seed = 69
|
seed = 69
|
||||||
out_path = Path(__file__).parent / 'study_out' / 'e_1_1631709932'/ 'no_obs' / 'itemdirt'/'A2C_1631709932' / '0_A2C_1631709932'
|
out_path = Path(__file__).parent / 'study_out' / 'e_1_1631709932' / 'no_obs' / 'dirt' / 'A2C_1631709932' / '0_A2C_1631709932'
|
||||||
model_path = out_path / model_name
|
model_path = out_path / model_name
|
||||||
|
|
||||||
with (out_path / f'env_params.json').open('r') as f:
|
with (out_path / f'env_params.json').open('r') as f:
|
||||||
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
|
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
|
||||||
env_kwargs.update(verbose=False, env_seed=seed, record_episodes=True)
|
env_kwargs.update(additional_agent_placeholder=None)
|
||||||
|
# env_kwargs.update(verbose=False, env_seed=seed, record_episodes=True, parse_doors=True)
|
||||||
|
|
||||||
this_model = out_path / 'model.zip'
|
this_model = out_path / 'model.zip'
|
||||||
|
|
||||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
|
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
|
||||||
model = model_cls.load(this_model)
|
model = model_cls.load(this_model)
|
||||||
|
|
||||||
with RecorderCallback(filepath=Path() / 'recorder_out.json') as recorder:
|
with RecorderCallback(filepath=Path() / 'recorder_out_doors.json') as recorder:
|
||||||
# Init Env
|
# Init Env
|
||||||
with DirtItemFactory(**env_kwargs) as env:
|
with DirtFactory(**env_kwargs) as env:
|
||||||
|
obs_shape = env.observation_space.shape
|
||||||
# Evaluation Loop for i in range(n Episodes)
|
# Evaluation Loop for i in range(n Episodes)
|
||||||
for episode in range(5):
|
for episode in range(5):
|
||||||
obs = env.reset()
|
obs = env.reset()
|
||||||
@ -41,6 +43,7 @@ if __name__ == '__main__':
|
|||||||
env_state, step_r, done_bool, info_obj = env.step(action[0])
|
env_state, step_r, done_bool, info_obj = env.step(action[0])
|
||||||
recorder.read_info(0, info_obj)
|
recorder.read_info(0, info_obj)
|
||||||
rew += step_r
|
rew += step_r
|
||||||
|
env.render()
|
||||||
if done_bool:
|
if done_bool:
|
||||||
recorder.read_done(0, done_bool)
|
recorder.read_done(0, done_bool)
|
||||||
break
|
break
|
||||||
|
169
studies/e_1.py
169
studies/e_1.py
@ -1,5 +1,6 @@
|
|||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# noinspection PyUnboundLocalVariable
|
# noinspection PyUnboundLocalVariable
|
||||||
@ -25,11 +26,14 @@ from environments.factory.factory_dirt_item import DirtItemFactory
|
|||||||
from environments.factory.factory_item import ItemProperties, ItemFactory
|
from environments.factory.factory_item import ItemProperties, ItemFactory
|
||||||
from environments.logging.monitor import MonitorCallback
|
from environments.logging.monitor import MonitorCallback
|
||||||
from environments.utility_classes import MovementProperties
|
from environments.utility_classes import MovementProperties
|
||||||
|
import pickle
|
||||||
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
|
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
|
||||||
# Define a global studi save path
|
# Define a global studi save path
|
||||||
start_time = 1631709932 # int(time.time())
|
start_time = int(time.time())
|
||||||
study_root_path = (Path('..') if not DIR else Path()) / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
||||||
|
|
||||||
"""
|
"""
|
||||||
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
||||||
@ -56,6 +60,11 @@ There are further distinctions to be made:
|
|||||||
- This tells the agent to treat other agents as obstacle.
|
- This tells the agent to treat other agents as obstacle.
|
||||||
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
||||||
- We are out of distribution.
|
- We are out of distribution.
|
||||||
|
|
||||||
|
4. Obseration (similiar to camera read out) ['in_lvl_0.5', 'in_lvl_n']
|
||||||
|
- This tells the agent to treat other agents as obstacle, but "sees" them encoded as a different value.
|
||||||
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
||||||
|
- We are out of distribution.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
@ -122,12 +131,12 @@ if __name__ == '__main__':
|
|||||||
# Further Adjustments are done post-training
|
# Further Adjustments are done post-training
|
||||||
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
|
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
|
||||||
# No further adjustment needed
|
# No further adjustment needed
|
||||||
'no_obs': None
|
'no_obs': {}
|
||||||
}
|
}
|
||||||
|
|
||||||
# Train starts here ############################################################
|
# Train starts here ############################################################
|
||||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||||
if False:
|
if True:
|
||||||
for observation_mode in observation_modes.keys():
|
for observation_mode in observation_modes.keys():
|
||||||
for env_name in env_names:
|
for env_name in env_names:
|
||||||
for model_cls in h.MODEL_MAP.values():
|
for model_cls in h.MODEL_MAP.values():
|
||||||
@ -151,14 +160,13 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
# Env Init & Model kwargs definition
|
# Env Init & Model kwargs definition
|
||||||
if model_cls.__name__ in ["PPO", "A2C"]:
|
if model_cls.__name__ in ["PPO", "A2C"]:
|
||||||
env = env_class(**env_kwargs)
|
# env_factory = env_class(**env_kwargs)
|
||||||
|
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
|
||||||
# env = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs) for _ in range(1)],
|
for _ in range(1)], start_method="spawn")
|
||||||
# start_method="spawn")
|
|
||||||
model_kwargs = policy_model_kwargs()
|
model_kwargs = policy_model_kwargs()
|
||||||
|
|
||||||
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
||||||
env = env_class(**env_kwargs)
|
with env_class(**env_kwargs) as env_factory:
|
||||||
model_kwargs = dqn_model_kwargs()
|
model_kwargs = dqn_model_kwargs()
|
||||||
|
|
||||||
else:
|
else:
|
||||||
@ -166,12 +174,14 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
param_path = seed_path / f'env_params.json'
|
param_path = seed_path / f'env_params.json'
|
||||||
try:
|
try:
|
||||||
env.env_method('save_params', param_path)
|
env_factory.env_method('save_params', param_path)
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
env.save_params(param_path)
|
env_factory.save_params(param_path)
|
||||||
|
|
||||||
# Model Init
|
# Model Init
|
||||||
model = model_cls("MlpPolicy", env, verbose=1, seed=seed, device='cpu', **model_kwargs)
|
model = model_cls("MlpPolicy", env_factory,
|
||||||
|
verbose=1, seed=seed, device='cpu',
|
||||||
|
**model_kwargs)
|
||||||
|
|
||||||
# Model train
|
# Model train
|
||||||
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
||||||
@ -179,27 +189,87 @@ if __name__ == '__main__':
|
|||||||
# Model save
|
# Model save
|
||||||
save_path = seed_path / f'model.zip'
|
save_path = seed_path / f'model.zip'
|
||||||
model.save(save_path)
|
model.save(save_path)
|
||||||
pass
|
|
||||||
# Compare perfoormance runs, for each seed within a model
|
# Better be save then sorry: Clean up!
|
||||||
|
del env_factory, model
|
||||||
|
import gc
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
# Compare performance runs, for each seed within a model
|
||||||
compare_seed_runs(combination_path)
|
compare_seed_runs(combination_path)
|
||||||
|
# Better be save then sorry: Clean up!
|
||||||
|
del model_kwargs, env_kwargs
|
||||||
|
import gc
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
# Compare performance runs, for each model
|
# Compare performance runs, for each model
|
||||||
# FIXME: Check THIS!!!!
|
# FIXME: Check THIS!!!!
|
||||||
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward')
|
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward')
|
||||||
|
pass
|
||||||
|
pass
|
||||||
|
pass
|
||||||
|
pass
|
||||||
# Train ends here ############################################################
|
# Train ends here ############################################################
|
||||||
|
exit()
|
||||||
# Evaluation starts here #####################################################
|
# Evaluation starts here #####################################################
|
||||||
# Iterate Observation Modes
|
# First Iterate over every model and monitor "as trained"
|
||||||
|
baseline_monitor_file = 'e_1_baseline_monitor.pick'
|
||||||
|
if True:
|
||||||
|
render = True
|
||||||
for observation_mode in observation_modes:
|
for observation_mode in observation_modes:
|
||||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||||
# For trained policy in study_root_path / identifier
|
# For trained policy in study_root_path / identifier
|
||||||
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
||||||
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
||||||
# TODO: Pick random seed or iterate over available seeds
|
# Iteration
|
||||||
|
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||||
|
# retrieve model class
|
||||||
|
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
||||||
|
# Load both agents
|
||||||
|
model = model_cls.load(seed_path / 'model.zip')
|
||||||
|
# Load old env kwargs
|
||||||
|
with next(seed_path.glob('*.json')).open('r') as f:
|
||||||
|
env_kwargs = simplejson.load(f)
|
||||||
|
# Monitor Init
|
||||||
|
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
|
||||||
|
# Init Env
|
||||||
|
env_factory = env_map[env_path.name][0](**env_kwargs)
|
||||||
|
# Evaluation Loop for i in range(n Episodes)
|
||||||
|
for episode in range(100):
|
||||||
|
obs = env_factory.reset()
|
||||||
|
rew, done_bool = 0, False
|
||||||
|
while not done_bool:
|
||||||
|
action = model.predict(obs, deterministic=True)[0]
|
||||||
|
env_state, step_r, done_bool, info_obj = env_factory.step(action)
|
||||||
|
monitor.read_info(0, info_obj)
|
||||||
|
rew += step_r
|
||||||
|
if render:
|
||||||
|
env_factory.render()
|
||||||
|
if done_bool:
|
||||||
|
monitor.read_done(0, done_bool)
|
||||||
|
break
|
||||||
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||||
|
# Eval monitor outputs are automatically stored by the monitor object
|
||||||
|
del model, env_kwargs, env_factory
|
||||||
|
import gc
|
||||||
|
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||||
|
ood_monitor_file = 'e_1_monitor.pick'
|
||||||
|
if True:
|
||||||
|
for observation_mode in observation_modes:
|
||||||
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||||
|
# For trained policy in study_root_path / identifier
|
||||||
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
||||||
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
||||||
|
# FIXME: Pick random seed or iterate over available seeds
|
||||||
# First seed path version
|
# First seed path version
|
||||||
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
||||||
# Iteration
|
# Iteration
|
||||||
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||||
|
if (seed_path / f'e_1_monitor.pick').exists():
|
||||||
|
continue
|
||||||
# retrieve model class
|
# retrieve model class
|
||||||
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
||||||
# Load both agents
|
# Load both agents
|
||||||
@ -207,21 +277,22 @@ if __name__ == '__main__':
|
|||||||
# Load old env kwargs
|
# Load old env kwargs
|
||||||
with next(seed_path.glob('*.json')).open('r') as f:
|
with next(seed_path.glob('*.json')).open('r') as f:
|
||||||
env_kwargs = simplejson.load(f)
|
env_kwargs = simplejson.load(f)
|
||||||
env_kwargs.update(n_agents=2, additional_agent_placeholder=None,
|
env_kwargs.update(
|
||||||
|
n_agents=2, additional_agent_placeholder=None,
|
||||||
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
|
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
|
||||||
|
|
||||||
# Monitor Init
|
# Monitor Init
|
||||||
with MonitorCallback(filepath=seed_path / f'e_1_monitor.pick') as monitor:
|
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
|
||||||
# Init Env
|
# Init Env
|
||||||
env = env_map[env_path.name][0](**env_kwargs)
|
with env_map[env_path.name][0](**env_kwargs) as env_factory:
|
||||||
# Evaluation Loop for i in range(n Episodes)
|
# Evaluation Loop for i in range(n Episodes)
|
||||||
for episode in range(50):
|
for episode in range(50):
|
||||||
obs = env.reset()
|
obs = env_factory.reset()
|
||||||
rew, done_bool = 0, False
|
rew, done_bool = 0, False
|
||||||
while not done_bool:
|
while not done_bool:
|
||||||
actions = [model.predict(obs[i], deterministic=False)[0]
|
actions = [model.predict(obs[i], deterministic=False)[0]
|
||||||
for i, model in enumerate(models)]
|
for i, model in enumerate(models)]
|
||||||
env_state, step_r, done_bool, info_obj = env.step(actions)
|
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
|
||||||
monitor.read_info(0, info_obj)
|
monitor.read_info(0, info_obj)
|
||||||
rew += step_r
|
rew += step_r
|
||||||
if done_bool:
|
if done_bool:
|
||||||
@ -229,6 +300,58 @@ if __name__ == '__main__':
|
|||||||
break
|
break
|
||||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||||
# Eval monitor outputs are automatically stored by the monitor object
|
# Eval monitor outputs are automatically stored by the monitor object
|
||||||
|
del models, env_kwargs, env_factory
|
||||||
|
import gc
|
||||||
|
|
||||||
|
gc.collect()
|
||||||
|
|
||||||
|
# Plotting
|
||||||
|
if True:
|
||||||
# TODO: Plotting
|
# TODO: Plotting
|
||||||
|
df_list = list()
|
||||||
|
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
|
||||||
|
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
|
||||||
|
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
|
||||||
|
# Gather per seed results in this list
|
||||||
|
|
||||||
|
for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()):
|
||||||
|
for monitor_file in [baseline_monitor_file, ood_monitor_file]:
|
||||||
|
|
||||||
|
with (seed_folder / monitor_file).open('rb') as f:
|
||||||
|
monitor_df = pickle.load(f)
|
||||||
|
|
||||||
|
monitor_df = monitor_df.fillna(0)
|
||||||
|
monitor_df['seed'] = int(seed_folder.name.split('_')[0])
|
||||||
|
monitor_df['monitor'] = monitor_file.split('.')[0]
|
||||||
|
monitor_df['monitor'] = monitor_df['monitor'].astype(str)
|
||||||
|
monitor_df['env'] = env_folder.name
|
||||||
|
|
||||||
|
monitor_df['obs_mode'] = observation_folder.name
|
||||||
|
monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str)
|
||||||
|
monitor_df['model'] = model_folder.name.split('_')[0]
|
||||||
|
|
||||||
|
|
||||||
|
df_list.append(monitor_df)
|
||||||
|
|
||||||
|
id_cols = ['monitor', 'env', 'obs_mode', 'model']
|
||||||
|
|
||||||
|
df = pd.concat(df_list, ignore_index=True)
|
||||||
|
df = df.fillna(0)
|
||||||
|
|
||||||
|
for id_col in id_cols:
|
||||||
|
df[id_col] = df[id_col].astype(str)
|
||||||
|
|
||||||
|
df_grouped = df.groupby(id_cols + ['seed']
|
||||||
|
).agg({key: 'sum' if "Agent" in key else 'mean' for key in df.columns
|
||||||
|
if key not in (id_cols + ['seed'])})
|
||||||
|
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
|
||||||
|
value_vars='step_reward', var_name="Measurement",
|
||||||
|
value_name="Score")
|
||||||
|
|
||||||
|
c = sns.catplot(data=df_melted, x='obs_mode', hue='monitor', row='model', col='env', y='Score', sharey=False,
|
||||||
|
kind="box", height=4, aspect=.7, legend_out=True)
|
||||||
|
c.set_xticklabels(rotation=65, horizontalalignment='right')
|
||||||
|
plt.tight_layout(pad=2)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
Loading…
x
Reference in New Issue
Block a user