new observation properties for testing of technical limitations

This commit is contained in:
Steffen Illium 2021-11-05 15:59:19 +01:00
parent b5c6105b7b
commit d69cf75c15
9 changed files with 424 additions and 263 deletions

View File

@ -16,7 +16,8 @@ from environments.helpers import Constants as c, Constants
from environments import helpers as h
from environments.factory.base.objects import Agent, Tile, Action
from environments.factory.base.registers import Actions, Entities, Agents, Doors, FloorTiles, WallTiles, PlaceHolders
from environments.utility_classes import MovementProperties
from environments.utility_classes import MovementProperties, ObservationProperties
from environments.utility_classes import AgentRenderOptions as a_obs
import simplejson
@ -33,7 +34,7 @@ class BaseFactory(gym.Env):
@property
def observation_space(self):
if r := self.pomdp_r:
if r := self._pomdp_r:
z = self._obs_cube.shape[0]
xy = r*2 + 1
level_shape = (z, xy, xy)
@ -44,24 +45,32 @@ class BaseFactory(gym.Env):
@property
def pomdp_diameter(self):
return self.pomdp_r * 2 + 1
return self._pomdp_r * 2 + 1
@property
def movement_actions(self):
return self._actions.movement_actions
def __enter__(self):
return self if self.frames_to_stack == 0 else FrameStack(self, self.frames_to_stack)
return self if self.obs_prop.frames_to_stack == 0 else \
FrameStack(self, self.obs_prop.frames_to_stack)
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2), pomdp_r: Union[None, int] = 0,
movement_properties: MovementProperties = MovementProperties(), parse_doors=False,
combin_agent_obs: bool = False, frames_to_stack=0, record_episodes=False,
omit_agent_in_obs=False, done_at_collision=False, cast_shadows=True, additional_agent_placeholder=None,
def __init__(self, level_name='simple', n_agents=1, max_steps=int(5e2),
mv_prop: MovementProperties = MovementProperties(),
obs_prop: ObservationProperties = ObservationProperties(),
parse_doors=False, record_episodes=False, done_at_collision=False,
verbose=False, doors_have_area=True, env_seed=time.time_ns(), **kwargs):
assert frames_to_stack != 1 and frames_to_stack >= 0, "'frames_to_stack' cannot be negative or 1."
if isinstance(mv_prop, dict):
mv_prop = MovementProperties(**mv_prop)
if isinstance(obs_prop, dict):
obs_prop = ObservationProperties(**obs_prop)
assert obs_prop.frames_to_stack != 1 and \
obs_prop.frames_to_stack >= 0, "'frames_to_stack' cannot be negative or 1."
if kwargs:
print(f'Following kwargs were passed, but ignored: {kwargs}')
@ -69,24 +78,18 @@ class BaseFactory(gym.Env):
self.env_seed = env_seed
self.seed(env_seed)
self._base_rng = np.random.default_rng(self.env_seed)
if isinstance(movement_properties, dict):
movement_properties = MovementProperties(**movement_properties)
self.movement_properties = movement_properties
self.mv_prop = mv_prop
self.obs_prop = obs_prop
self.level_name = level_name
self._level_shape = None
self.verbose = verbose
self.additional_agent_placeholder = additional_agent_placeholder
self._renderer = None # expensive - don't use it when not required !
self._entities = Entities()
self.n_agents = n_agents
self.max_steps = max_steps
self.pomdp_r = pomdp_r
self.combin_agent_obs = combin_agent_obs
self.omit_agent_in_obs = omit_agent_in_obs
self.cast_shadows = cast_shadows
self.frames_to_stack = frames_to_stack
self._pomdp_r = self.obs_prop.pomdp_r
self.done_at_collision = done_at_collision
self.record_episodes = record_episodes
@ -130,24 +133,32 @@ class BaseFactory(gym.Env):
parsed_doors = h.one_hot_level(parsed_level, c.DOOR)
if np.any(parsed_doors):
door_tiles = [floor.by_pos(pos) for pos in np.argwhere(parsed_doors == c.OCCUPIED_CELL.value)]
doors = Doors.from_tiles(door_tiles, self._level_shape, context=floor)
doors = Doors.from_tiles(door_tiles, self._level_shape,
entity_kwargs=dict(context=floor)
)
entities.update({c.DOORS: doors})
# Actions
self._actions = Actions(self.movement_properties, can_use_doors=self.parse_doors)
self._actions = Actions(self.mv_prop, can_use_doors=self.parse_doors)
if additional_actions := self.additional_actions:
self._actions.register_additional_items(additional_actions)
# Agents
agents = Agents.from_tiles(floor.empty_tiles[:self.n_agents], self._level_shape,
individual_slices=not self.combin_agent_obs)
individual_slices=self.obs_prop.render_agents == a_obs.SEPERATE,
hide_from_obs_builder=self.obs_prop.render_agents == a_obs.LEVEL,
is_observable=self.obs_prop.render_agents != a_obs.NOT
)
entities.update({c.AGENT: agents})
if self.additional_agent_placeholder is not None:
if self.obs_prop.additional_agent_placeholder is not None:
# TODO: Make this accept Lists for multiple placeholders
# Empty Observations with either [0, 1, N(0, 1)]
placeholder = PlaceHolders.from_tiles([self._NO_POS_TILE], self._level_shape,
fill_value=self.additional_agent_placeholder)
entity_kwargs=dict(
fill_value=self.obs_prop.additional_agent_placeholder)
)
entities.update({c.AGENT_PLACEHOLDER: placeholder})
@ -163,24 +174,11 @@ class BaseFactory(gym.Env):
return self._entities
def _init_obs_cube(self):
arrays = self._entities.observable_arrays
arrays = self._entities.obs_arrays
# FIXME: Move logic to Register
if self.omit_agent_in_obs and self.n_agents == 1:
del arrays[c.AGENT]
# This does not seem to be necesarry, because this case is allready handled by the Agent Register Class
# elif self.omit_agent_in_obs:
# arrays[c.AGENT] = np.delete(arrays[c.AGENT], 0, axis=0)
obs_cube_z = sum([a.shape[0] if not self[key].is_per_agent else 1 for key, a in arrays.items()])
self._obs_cube = np.zeros((obs_cube_z, *self._level_shape), dtype=np.float32)
# Optionally Pad this obs cube for pomdp cases
if r := self.pomdp_r:
x, y = self._level_shape
# was c.SHADOW
self._padded_obs_cube = np.full((obs_cube_z, x + r*2, y + r*2), c.SHADOWED_CELL.value, dtype=np.float32)
self._padded_obs_cube[:, r:r+x, r:r+y] = self._obs_cube
def reset(self) -> (np.ndarray, int, bool, dict):
_ = self._base_init_env()
self._init_obs_cube()
@ -198,7 +196,6 @@ class BaseFactory(gym.Env):
assert isinstance(actions, Iterable), f'"actions" has to be in [{int, list}]'
self._steps += 1
done = False
# Pre step Hook for later use
self.hook_pre_step()
@ -285,17 +282,22 @@ class BaseFactory(gym.Env):
def _build_per_agent_obs(self, agent: Agent, state_array_dict) -> np.ndarray:
agent_pos_is_omitted = False
agent_omit_idx = None
if self.omit_agent_in_obs and self.n_agents == 1:
if self.obs_prop.omit_agent_self and self.n_agents == 1:
# There is only a single agent and we want to omit the agent obs, so just remove the array.
del state_array_dict[c.AGENT]
elif self.omit_agent_in_obs and self.combin_agent_obs and self.n_agents > 1:
# del state_array_dict[c.AGENT]
# Not Needed any more,
pass
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents in [a_obs.COMBINED, ] and self.n_agents > 1:
state_array_dict[c.AGENT][0, agent.x, agent.y] -= agent.encoding
agent_pos_is_omitted = True
elif self.omit_agent_in_obs and not self.combin_agent_obs and self.n_agents > 1:
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents == a_obs.SEPERATE and self.n_agents > 1:
agent_omit_idx = next((i for i, a in enumerate(self[c.AGENT]) if a == agent))
running_idx, shadowing_idxs, can_be_shadowed_idxs = 0, [], []
self._obs_cube[:] = 0
# FIXME: Refactor this! Make a globally build observation, then add individual per-agent-obs
for key, array in state_array_dict.items():
# Flush state array object representation to obs cube
if not self[key].hide_from_obs_builder:
@ -309,9 +311,12 @@ class BaseFactory(gym.Env):
for array_idx in range(array.shape[0]):
self._obs_cube[running_idx: running_idx+z] = array[[x for x in range(array.shape[0])
if x != agent_omit_idx]]
elif key == c.AGENT and self.omit_agent_in_obs and self.combin_agent_obs:
# Agent OBS are combined
elif key == c.AGENT and self.obs_prop.omit_agent_self \
and self.obs_prop.render_agents == a_obs.COMBINED:
z = 1
self._obs_cube[running_idx: running_idx + z] = array
# Each Agent is rendered on a seperate array slice
else:
z = array.shape[0]
self._obs_cube[running_idx: running_idx + z] = array
@ -328,19 +333,14 @@ class BaseFactory(gym.Env):
if agent_pos_is_omitted:
state_array_dict[c.AGENT][0, agent.x, agent.y] += agent.encoding
if r := self.pomdp_r:
self._padded_obs_cube[:] = c.SHADOWED_CELL.value # Was c.SHADOW
# self._padded_obs_cube[0] = c.OCCUPIED_CELL.value
x, y = self._level_shape
self._padded_obs_cube[:, r:r + x, r:r + y] = self._obs_cube
global_x, global_y = map(sum, zip(agent.pos, (r, r)))
x0, x1 = max(0, global_x - self.pomdp_r), global_x + self.pomdp_r + 1
y0, y1 = max(0, global_y - self.pomdp_r), global_y + self.pomdp_r + 1
obs = self._padded_obs_cube[:, x0:x1, y0:y1]
if self._pomdp_r:
obs = self._do_pomdp_obs_cutout(agent, self._obs_cube)
else:
obs = self._obs_cube
if self.cast_shadows:
obs = obs.copy()
if self.obs_prop.cast_shadows:
obs_block_light = [obs[idx] != c.OCCUPIED_CELL.value for idx in shadowing_idxs]
door_shadowing = False
if self.parse_doors:
@ -350,8 +350,8 @@ class BaseFactory(gym.Env):
for group in door.connectivity_subgroups:
if agent.last_pos not in group:
door_shadowing = True
if self.pomdp_r:
blocking = [tuple(np.subtract(x, agent.pos) + (self.pomdp_r, self.pomdp_r))
if self._pomdp_r:
blocking = [tuple(np.subtract(x, agent.pos) + (self._pomdp_r, self._pomdp_r))
for x in group]
xs, ys = zip(*blocking)
else:
@ -361,8 +361,8 @@ class BaseFactory(gym.Env):
obs_block_light[0][xs, ys] = False
light_block_map = Map((np.prod(obs_block_light, axis=0) != True).astype(int))
if self.pomdp_r:
light_block_map = light_block_map.do_fov(self.pomdp_r, self.pomdp_r, max(self._level_shape))
if self._pomdp_r:
light_block_map = light_block_map.do_fov(self._pomdp_r, self._pomdp_r, max(self._level_shape))
else:
light_block_map = light_block_map.do_fov(*agent.pos, max(self._level_shape))
if door_shadowing:
@ -374,6 +374,20 @@ class BaseFactory(gym.Env):
else:
pass
# Agents observe other agents as wall
if self.obs_prop.render_agents == a_obs.LEVEL and self.n_agents > 1:
other_agent_obs = self[c.AGENT].as_array()
if self.obs_prop.omit_agent_self:
other_agent_obs[:, agent.x, agent.y] -= agent.encoding
if self.obs_prop.pomdp_r:
oobs = self._do_pomdp_obs_cutout(agent, other_agent_obs)[0]
mask = (oobs != c.SHADOWED_CELL.value).astype(int)
obs[0] += oobs * mask
else:
obs[0] += other_agent_obs
# Additional Observation:
for additional_obs in self.additional_obs_build():
obs[running_idx:running_idx+additional_obs.shape[0]] = additional_obs
@ -384,6 +398,37 @@ class BaseFactory(gym.Env):
return obs
def _do_pomdp_obs_cutout(self, agent, obs_to_be_padded):
assert obs_to_be_padded.ndim == 3
r, d = self._pomdp_r, self.pomdp_diameter
x0, x1 = max(0, agent.x - r), min(agent.x + r + 1, self._level_shape[0])
y0, y1 = max(0, agent.y - r), min(agent.y + r + 1, self._level_shape[1])
# Other Agent Obs = oobs
oobs = obs_to_be_padded[:, x0:x1, y0:y1]
if oobs.shape[0:] != (d,) * 2:
if xd := oobs.shape[1] % d:
if agent.x > r:
x0_pad = 0
x1_pad = (d - xd)
else:
x0_pad = r - agent.x
x1_pad = 0
else:
x0_pad, x1_pad = 0, 0
if yd := oobs.shape[2] % d:
if agent.y > r:
y0_pad = 0
y1_pad = (d - yd)
else:
y0_pad = r - agent.y
y1_pad = 0
else:
y0_pad, y1_pad = 0, 0
oobs = np.pad(oobs, ((0, 0), (x0_pad, x1_pad), (y0_pad, y1_pad)), 'constant')
return oobs
def get_all_tiles_with_collisions(self) -> List[Tile]:
tiles_with_collisions = list()
for tile in self[c.FLOOR]:
@ -449,7 +494,7 @@ class BaseFactory(gym.Env):
if self._actions.is_moving_action(agent.temp_action):
if agent.temp_valid:
# info_dict.update(movement=1)
# reward += 0.00
reward -= 0.001
pass
else:
reward -= 0.01
@ -501,7 +546,7 @@ class BaseFactory(gym.Env):
def render(self, mode='human'):
if not self._renderer: # lazy init
height, width = self._obs_cube.shape[1:]
self._renderer = Renderer(width, height, view_radius=self.pomdp_r, fps=5)
self._renderer = Renderer(width, height, view_radius=self._pomdp_r, fps=5)
walls = [RenderEntity('wall', wall.pos) for wall in self[c.WALLS]]

View File

@ -1,3 +1,4 @@
import numbers
import random
from abc import ABC
from typing import List, Union, Dict
@ -91,21 +92,18 @@ class EntityObjectRegister(ObjectRegister, ABC):
raise NotImplementedError
@classmethod
def from_tiles(cls, tiles, *args, **kwargs):
def from_tiles(cls, tiles, *args, entity_kwargs=None, **kwargs):
# objects_name = cls._accepted_objects.__name__
register_obj = cls(*args, **kwargs)
try:
del kwargs['individual_slices']
except KeyError:
pass
entities = [cls._accepted_objects(tile, str_ident=i, **kwargs)
entities = [cls._accepted_objects(tile, str_ident=i, **entity_kwargs if entity_kwargs is not None else {})
for i, tile in enumerate(tiles)]
register_obj.register_additional_items(entities)
return register_obj
@classmethod
def from_argwhere_coordinates(cls, positions: [(int, int)], tiles, *args, **kwargs):
return cls.from_tiles([tiles.by_pos(position) for position in positions], *args, **kwargs)
def from_argwhere_coordinates(cls, positions: [(int, int)], tiles, *args, entity_kwargs=None, **kwargs, ):
return cls.from_tiles([tiles.by_pos(position) for position in positions], *args, entity_kwargs=entity_kwargs,
**kwargs)
@property
def positions(self):
@ -166,10 +164,15 @@ class PlaceHolders(MovingEntityObjectRegister):
# noinspection DuplicatedCode
def as_array(self):
if isinstance(self.fill_value, int):
if isinstance(self.fill_value, numbers.Number):
self._array[:] = self.fill_value
elif self.fill_value == "normal":
elif isinstance(self.fill_value, str):
if self.fill_value.lower() in ['normal', 'n']:
self._array = np.random.normal(size=self._array.shape)
else:
raise ValueError('Choose one of: ["normal", "N"]')
else:
raise TypeError('Objects of type "str" or "number" is required here.')
if self.individual_slices:
return self._array
@ -183,10 +186,12 @@ class Entities(Register):
@property
def observable_arrays(self):
# FIXME: Find a better name
return {key: val.as_array() for key, val in self.items() if val.is_observable}
@property
def obs_arrays(self):
# FIXME: Find a better name
return {key: val.as_array() for key, val in self.items() if val.is_observable and not val.hide_from_obs_builder}
@property
@ -208,6 +213,10 @@ class Entities(Register):
def register_additional_items(self, others: Dict):
return self.register_item(others)
def by_pos(self, pos: (int, int)):
found_entities = [y for y in (x.by_pos(pos) for x in self.values() if hasattr(x, 'by_pos')) if y is not None]
return found_entities
class WallTiles(EntityObjectRegister):
_accepted_objects = Wall
@ -289,6 +298,10 @@ class Agents(MovingEntityObjectRegister):
_accepted_objects = Agent
def __init__(self, *args, hide_from_obs_builder=False, **kwargs):
super().__init__(*args, **kwargs)
self.hide_from_obs_builder = hide_from_obs_builder
# noinspection DuplicatedCode
def as_array(self):
self._array[:] = c.FREE_CELL.value

View File

@ -14,7 +14,7 @@ from environments.factory.base.registers import Entities, MovingEntityObjectRegi
from environments.factory.renderer import RenderEntity
from environments.logging.recorder import RecorderCallback
from environments.utility_classes import ObservationProperties
CLEAN_UP_ACTION = h.EnvActions.CLEAN_UP
@ -65,9 +65,9 @@ class DirtRegister(MovingEntityObjectRegister):
def as_array(self):
if self._array is not None:
self._array[:] = c.FREE_CELL.value
for key, dirt in self.items():
for dirt in self.values():
if dirt.amount == 0:
self.delete_item(key)
self.delete_item(dirt)
self._array[0, dirt.x, dirt.y] = dirt.amount
else:
self._array = np.zeros((1, *self._level_shape))
@ -124,21 +124,21 @@ class DirtFactory(BaseFactory):
@property
def additional_actions(self) -> Union[Action, List[Action]]:
super_actions = super().additional_actions
if self.dirt_properties.agent_can_interact:
if self.dirt_prop.agent_can_interact:
super_actions.append(Action(enum_ident=CLEAN_UP_ACTION))
return super_actions
@property
def additional_entities(self) -> Dict[(Enum, Entities)]:
super_entities = super().additional_entities
dirt_register = DirtRegister(self.dirt_properties, self._level_shape)
dirt_register = DirtRegister(self.dirt_prop, self._level_shape)
super_entities.update(({c.DIRT: dirt_register}))
return super_entities
def __init__(self, *args, dirt_properties: DirtProperties = DirtProperties(), env_seed=time.time_ns(), **kwargs):
if isinstance(dirt_properties, dict):
dirt_properties = DirtProperties(**dirt_properties)
self.dirt_properties = dirt_properties
def __init__(self, *args, dirt_prop: DirtProperties = DirtProperties(), env_seed=time.time_ns(), **kwargs):
if isinstance(dirt_prop, dict):
dirt_prop = DirtProperties(**dirt_prop)
self.dirt_prop = dirt_prop
self._dirt_rng = np.random.default_rng(env_seed)
self._dirt: DirtRegister
kwargs.update(env_seed=env_seed)
@ -153,7 +153,7 @@ class DirtFactory(BaseFactory):
def clean_up(self, agent: Agent) -> c:
if dirt := self[c.DIRT].by_pos(agent.pos):
new_dirt_amount = dirt.amount - self.dirt_properties.clean_amount
new_dirt_amount = dirt.amount - self.dirt_prop.clean_amount
if new_dirt_amount <= 0:
self[c.DIRT].delete_item(dirt)
@ -170,16 +170,16 @@ class DirtFactory(BaseFactory):
]
self._dirt_rng.shuffle(free_for_dirt)
if initial_spawn:
var = self.dirt_properties.initial_dirt_spawn_r_var
new_spawn = self.dirt_properties.initial_dirt_ratio + dirt_rng.uniform(-var, var)
var = self.dirt_prop.initial_dirt_spawn_r_var
new_spawn = self.dirt_prop.initial_dirt_ratio + dirt_rng.uniform(-var, var)
else:
new_spawn = dirt_rng.uniform(0, self.dirt_properties.max_spawn_ratio)
new_spawn = dirt_rng.uniform(0, self.dirt_prop.max_spawn_ratio)
n_dirt_tiles = max(0, int(new_spawn * len(free_for_dirt)))
self[c.DIRT].spawn_dirt(free_for_dirt[:n_dirt_tiles])
def do_additional_step(self) -> dict:
info_dict = super().do_additional_step()
if smear_amount := self.dirt_properties.dirt_smear_amount:
if smear_amount := self.dirt_prop.dirt_smear_amount:
for agent in self[c.AGENT]:
if agent.temp_valid and agent.last_pos != c.NO_POS:
if self._actions.is_moving_action(agent.temp_action):
@ -196,7 +196,7 @@ class DirtFactory(BaseFactory):
pass # No Dirt Spawn
elif not self._next_dirt_spawn:
self.trigger_dirt_spawn()
self._next_dirt_spawn = self.dirt_properties.spawn_frequency
self._next_dirt_spawn = self.dirt_prop.spawn_frequency
else:
self._next_dirt_spawn -= 1
return info_dict
@ -205,7 +205,7 @@ class DirtFactory(BaseFactory):
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == CLEAN_UP_ACTION:
if self.dirt_properties.agent_can_interact:
if self.dirt_prop.agent_can_interact:
valid = self.clean_up(agent)
return valid
else:
@ -218,11 +218,11 @@ class DirtFactory(BaseFactory):
def do_additional_reset(self) -> None:
super().do_additional_reset()
self.trigger_dirt_spawn(initial_spawn=True)
self._next_dirt_spawn = self.dirt_properties.spawn_frequency if self.dirt_properties.spawn_frequency else -1
self._next_dirt_spawn = self.dirt_prop.spawn_frequency if self.dirt_prop.spawn_frequency else -1
def check_additional_done(self):
super_done = super().check_additional_done()
done = self.dirt_properties.done_when_clean and (len(self[c.DIRT]) == 0)
done = self.dirt_prop.done_when_clean and (len(self[c.DIRT]) == 0)
return super_done or done
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
@ -256,21 +256,22 @@ class DirtFactory(BaseFactory):
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as ARO
render = True
dirt_props = DirtProperties(1, 0.05, 0.1, 3, 1, 20, 0.0)
dirt_props = DirtProperties(1, 0.05, 0.1, 3, 1, 20, 0)
obs_props = ObservationProperties(render_agents=ARO.COMBINED, omit_agent_self=True, pomdp_r=2, additional_agent_placeholder=None)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': False,
'allow_no_op': False} #MovementProperties(True, True, False)
'allow_no_op': False}
with RecorderCallback(filepath=Path('debug_out') / f'recorder_xxxx.json', occupation_map=False,
trajectory_map=False) as recorder:
factory = DirtFactory(n_agents=1, done_at_collision=False, frames_to_stack=0,
level_name='rooms', max_steps=400, combin_agent_obs=True,
omit_agent_in_obs=True, parse_doors=True, pomdp_r=3,
record_episodes=True, verbose=True, cast_shadows=True,
movement_properties=move_props, dirt_properties=dirt_props
factory = DirtFactory(n_agents=3, done_at_collision=False,
level_name='rooms', max_steps=400,
obs_prop=obs_props, parse_doors=True,
record_episodes=True, verbose=True,
mv_prop=move_props, dirt_prop=dirt_props
)
# noinspection DuplicatedCode
@ -285,12 +286,10 @@ if __name__ == '__main__':
r = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
#recorder.read_info(0, info_obj)
r += step_r
if render:
factory.render()
if done_bool:
# recorder.read_done(0, done_bool)
break
print(f'Factory run {epoch} done, reward is:\n {r}')
pass

View File

@ -3,6 +3,7 @@ from collections import deque, UserList
from enum import Enum
from typing import List, Union, NamedTuple, Dict
import numpy as np
import random
from environments.factory.base.base_factory import BaseFactory
from environments.helpers import Constants as c
@ -18,13 +19,6 @@ NO_ITEM = 0
ITEM_DROP_OFF = 1
def inventory_slice_name(agent_i):
if isinstance(agent_i, int):
return f'{c.INVENTORY.name}_{c.AGENT.value}#{agent_i}'
else:
return f'{c.INVENTORY.name}_{agent_i}'
class Item(MoveableEntity):
def __init__(self, *args, **kwargs):
@ -77,7 +71,7 @@ class Inventory(UserList):
@property
def name(self):
return self.agent.name
return f'{self.__class__.__name__}({self.agent.name})'
def __init__(self, pomdp_r: int, level_shape: (int, int), agent: Agent, capacity: int):
super(Inventory, self).__init__()
@ -111,7 +105,8 @@ class Inventory(UserList):
def summarize_state(self, **kwargs):
attr_dict = {key: str(val) for key, val in self.__dict__.items() if not key.startswith('_') and key != 'data'}
attr_dict.update({val.name: val.summarize_state(**kwargs) for val in self})
attr_dict.update(dict(items={val.name: val.summarize_state(**kwargs) for val in self}))
attr_dict.update(dict(name=self.name))
return attr_dict
@ -149,6 +144,11 @@ class Inventories(ObjectRegister):
except StopIteration:
return None
def summarize_states(self, n_steps=None):
# as dict with additional nesting
# return dict(items=super(Inventories, self).summarize_states())
return super(Inventories, self).summarize_states(n_steps=n_steps)
class DropOffLocation(Entity):
@ -194,6 +194,9 @@ class DropOffLocations(EntityObjectRegister):
self._array[0, item.x, item.y] = item.encoding
return self._array
def __repr__(self):
super(DropOffLocations, self).__repr__()
class ItemProperties(NamedTuple):
n_items: int = 5 # How many items are there at the same time
@ -207,13 +210,13 @@ class ItemProperties(NamedTuple):
# noinspection PyAttributeOutsideInit, PyAbstractClass
class ItemFactory(BaseFactory):
# noinspection PyMissingConstructor
def __init__(self, *args, item_properties: ItemProperties = ItemProperties(), env_seed=time.time_ns(), **kwargs):
if isinstance(item_properties, dict):
item_properties = ItemProperties(**item_properties)
self.item_properties = item_properties
def __init__(self, *args, item_prop: ItemProperties = ItemProperties(), env_seed=time.time_ns(), **kwargs):
if isinstance(item_prop, dict):
item_prop = ItemProperties(**item_prop)
self.item_prop = item_prop
kwargs.update(env_seed=env_seed)
self._item_rng = np.random.default_rng(env_seed)
assert (item_properties.n_items <= ((1 + kwargs.get('pomdp_r', 0) * 2) ** 2)) or not kwargs.get('pomdp_r', 0)
assert (item_prop.n_items <= ((1 + kwargs.get('_pomdp_r', 0) * 2) ** 2)) or not kwargs.get('_pomdp_r', 0)
super().__init__(*args, **kwargs)
@property
@ -228,16 +231,19 @@ class ItemFactory(BaseFactory):
# noinspection PyUnresolvedReferences
super_entities = super().additional_entities
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_properties.n_drop_off_locations]
drop_offs = DropOffLocations.from_tiles(empty_tiles, self._level_shape,
storage_size_until_full=self.item_properties.max_dropoff_storage_size)
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_drop_off_locations]
drop_offs = DropOffLocations.from_tiles(
empty_tiles, self._level_shape,
entity_kwargs=dict(
storage_size_until_full=self.item_prop.max_dropoff_storage_size)
)
item_register = ItemRegister(self._level_shape)
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_properties.n_items]
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_items]
item_register.spawn_items(empty_tiles)
inventories = Inventories(self._level_shape if not self.pomdp_r else ((self.pomdp_diameter,) * 2))
inventories.spawn_inventories(self[c.AGENT], self.pomdp_r,
self.item_properties.max_agent_inventory_capacity)
inventories = Inventories(self._level_shape if not self._pomdp_r else ((self.pomdp_diameter,) * 2))
inventories.spawn_inventories(self[c.AGENT], self._pomdp_r,
self.item_prop.max_agent_inventory_capacity)
super_entities.update({c.DROP_OFF: drop_offs, c.ITEM: item_register, c.INVENTORY: inventories})
return super_entities
@ -270,7 +276,7 @@ class ItemFactory(BaseFactory):
valid = super().do_additional_actions(agent, action)
if valid is None:
if action == h.EnvActions.ITEM_ACTION:
if self.item_properties.agent_can_interact:
if self.item_prop.agent_can_interact:
valid = self.do_item_action(agent)
return valid
else:
@ -283,14 +289,14 @@ class ItemFactory(BaseFactory):
def do_additional_reset(self) -> None:
# noinspection PyUnresolvedReferences
super().do_additional_reset()
self._next_item_spawn = self.item_properties.spawn_frequency
self._next_item_spawn = self.item_prop.spawn_frequency
self.trigger_item_spawn()
def trigger_item_spawn(self):
if item_to_spawns := max(0, (self.item_properties.n_items - len(self[c.ITEM]))):
if item_to_spawns := max(0, (self.item_prop.n_items - len(self[c.ITEM]))):
empty_tiles = self[c.FLOOR].empty_tiles[:item_to_spawns]
self[c.ITEM].spawn_items(empty_tiles)
self._next_item_spawn = self.item_properties.spawn_frequency
self._next_item_spawn = self.item_prop.spawn_frequency
self.print(f'{item_to_spawns} new items have been spawned; next spawn in {self._next_item_spawn}')
else:
self.print('No Items are spawning, limit is reached.')
@ -351,30 +357,41 @@ class ItemFactory(BaseFactory):
if __name__ == '__main__':
import random
from environments.utility_classes import AgentRenderOptions as ARO, ObservationProperties
render = True
item_props = ItemProperties()
item_probs = ItemProperties()
factory = ItemFactory(item_properties=item_props, n_agents=3, done_at_collision=False, frames_to_stack=0,
level_name='rooms', max_steps=4000,
omit_agent_in_obs=True, parse_doors=True, pomdp_r=3,
record_episodes=False, verbose=False
obs_props = ObservationProperties(render_agents=ARO.LEVEL, omit_agent_self=True, pomdp_r=2)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': False,
'allow_no_op': False}
factory = ItemFactory(n_agents=3, done_at_collision=False,
level_name='rooms', max_steps=400,
obs_prop=obs_props, parse_doors=True,
record_episodes=True, verbose=True,
mv_prop=move_props, item_prop=item_probs
)
# noinspection DuplicatedCode
n_actions = factory.action_space.n - 1
_ = factory.observation_space
for epoch in range(100):
random_actions = [[random.randint(0, n_actions) for _ in range(factory.n_agents)] for _ in range(200)]
for epoch in range(4):
random_actions = [[random.randint(0, n_actions) for _
in range(factory.n_agents)] for _
in range(factory.max_steps + 1)]
env_state = factory.reset()
rew = 0
r = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
rew += step_r
r += step_r
if render:
factory.render()
if done_bool:
break
print(f'Factory run {epoch} done, reward is:\n {rew}')
print(f'Factory run {epoch} done, reward is:\n {r}')
pass

View File

@ -1,7 +1,24 @@
from typing import NamedTuple
from enum import Enum
from typing import NamedTuple, Union
class AgentRenderOptions(object):
SEPERATE = 'each'
COMBINED = 'combined'
LEVEL = 'lvl'
NOT = 'not'
class MovementProperties(NamedTuple):
allow_square_movement: bool = True
allow_diagonal_movement: bool = False
allow_no_op: bool = False
class ObservationProperties(NamedTuple):
render_agents: AgentRenderOptions = AgentRenderOptions.SEPERATE
omit_agent_self: bool = True
additional_agent_placeholder: Union[None, str, int] = None
cast_shadows = True
frames_to_stack: int = 0
pomdp_r: int = 0

View File

@ -56,7 +56,7 @@ if __name__ == '__main__':
for modeL_type in [A2C, PPO, DQN]: # ,RegDQN, QRDQN]:
for seed in range(3):
env_kwargs = dict(n_agents=1,
# item_properties=item_props,
# item_prop=item_props,
dirt_properties=dirt_props,
movement_properties=move_props,
pomdp_r=2, max_steps=1000, parse_doors=False,

View File

@ -48,7 +48,7 @@ if __name__ == '__main__':
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
max_local_amount=3, spawn_frequency=1, max_spawn_ratio=0.05)
# env_kwargs.update(n_agents=1, dirt_properties=dirt_props)
# env_kwargs.update(n_agents=1, dirt_prop=dirt_props)
env = DirtFactory(**env_kwargs)
env = FrameStack(env, 4)

View File

@ -5,6 +5,7 @@ import numpy as np
import yaml
from environments import helpers as h
from environments.helpers import Constants as c
from environments.factory.factory_dirt import DirtFactory
from environments.factory.factory_dirt_item import DirtItemFactory
from environments.logging.recorder import RecorderCallback
@ -15,29 +16,30 @@ warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
model_name = 'DQN_1631187073'
model_name = 'DQN_163519000'
run_id = 0
seed = 69
out_path = Path('debug_out/DQN_1635176929/0_DQN_1635176929')
n_agents = 2
out_path = Path('debug_out/DQN_163519000/1_DQN_163519000')
model_path = out_path
with (out_path / f'env_params.json').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env_kwargs.update(additional_agent_placeholder=None, n_agents=4)
if gain_amount := env_kwargs.get('dirt_properties', {}).get('gain_amount', None):
env_kwargs['dirt_properties']['max_spawn_amount'] = gain_amount
del env_kwargs['dirt_properties']['gain_amount']
env_kwargs.update(additional_agent_placeholder=None, n_agents=n_agents)
if gain_amount := env_kwargs.get('dirt_prop', {}).get('gain_amount', None):
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
del env_kwargs['dirt_prop']['gain_amount']
env_kwargs.update(record_episodes=True)
env_kwargs.update(record_episodes=False)
this_model = out_path / 'model.zip'
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in model_name)
models = [model_cls.load(this_model) for _ in range(4)]
models = [model_cls.load(this_model) for _ in range(n_agents)]
with RecorderCallback(filepath=Path() / 'recorder_out_DQN.json') as recorder:
# Init Env
with DirtItemFactory(**env_kwargs) as env:
with DirtFactory(**env_kwargs) as env:
obs_shape = env.observation_space.shape
# Evaluation Loop for i in range(n Episodes)
for episode in range(5):
@ -46,11 +48,11 @@ if __name__ == '__main__':
while not done_bool:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=True)[0] for j, model in enumerate(models)]
deterministic=False)[0] for j, model in enumerate(models)]
env_state, step_r, done_bool, info_obj = env.step(actions)
recorder.read_info(0, info_obj)
rew += step_r
# env.render()
env.render()
if done_bool:
recorder.read_done(0, done_bool)
break

View File

@ -26,16 +26,12 @@ from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.factory_dirt_item import DirtItemFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.monitor import MonitorCallback
from environments.utility_classes import MovementProperties
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
import pandas as pd
import seaborn as sns
# Define a global studi save path
start_time = 163519000 # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -68,6 +64,10 @@ There are further distinctions to be made:
- We are out of distribution.
"""
n_agents = 4
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
baseline_monitor_file = 'e_1_baseline_monitor.pick'
def policy_model_kwargs():
return dict(ent_coef=0.05)
@ -92,11 +92,96 @@ def encapsule_env_factory(env_fctry, env_kwrgs):
return _init
def load_model_run_baseline(seed_path, env_to_run):
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
model = model_cls.load(seed_path / 'model.zip')
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env_factory.step(action)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
# del model, env_kwargs, env_factory
# import gc
# gc.collect()
def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
global model_cls
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
try:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=False)[0] for j, model in enumerate(models)]
except ValueError as e:
print(e)
print('Env_Kwargs are:\n')
print(env_kwargs)
print('Path is:\n')
print(seed_path)
exit()
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
gc.collect()
if __name__ == '__main__':
train_steps = 8e5
# Define a global studi save path
start_time = '900000' # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2
)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
@ -108,18 +193,20 @@ if __name__ == '__main__':
item_props = ItemProperties(n_items=10, agent_can_interact=True,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1,
pomdp_r=2, max_steps=400, parse_doors=True,
level_name='rooms', frames_to_stack=3,
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
cast_shadows=True, doors_have_area=False, verbose=False,
movement_properties=move_props
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
level_name='rooms', record_episodes=False, doors_have_area=False,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props
)
# Bundle both environments with global kwargs and parameters
env_map = {'dirt': (DirtFactory, dict(dirt_properties=dirt_props, **factory_kwargs)),
'item': (ItemFactory, dict(item_properties=item_props, **factory_kwargs)),
'itemdirt': (DirtItemFactory, dict(dirt_properties=dirt_props, item_properties=item_props,
env_map = {'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
**factory_kwargs)),
'item': (ItemFactory, dict(item_prop=item_props,
**factory_kwargs)),
'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props,
item_prop=item_props,
**factory_kwargs))}
env_names = list(env_map.keys())
@ -130,11 +217,43 @@ if __name__ == '__main__':
# Fill-value = 1
# DEACTIVATED 'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
# Fill-value = N(0, 1)
'seperate_N': dict(additional_env_kwargs=dict(additional_agent_placeholder='N')),
# Further Adjustments are done post-training
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
),
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
),
# No further adjustment needed
'no_obs': {}
'no_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)
}
# Train starts here ############################################################
@ -223,52 +342,27 @@ if __name__ == '__main__':
# Evaluation starts here #####################################################
# First Iterate over every model and monitor "as trained"
baseline_monitor_file = 'e_1_baseline_monitor.pick'
if True:
render = False
for observation_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
# For trained policy in study_root_path / identifier
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# Iteration
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# retrieve model class
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
# Load both agents
model = model_cls.load(seed_path / 'model.zip')
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
with env_map[env_path.name][0](**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env_factory.step(action)
monitor.read_info(0, info_obj)
rew += step_r
if render:
env_factory.render()
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del model, env_kwargs, env_factory
import gc
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / baseline_monitor_file).exists())
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
result = pool.starmap(load_model_run_baseline,
it.product(paths,
(env_map[env_path.name][0],))
)
gc.collect()
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(seed_path)
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
n_agents = 4
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
if True:
for observation_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
@ -279,44 +373,18 @@ if __name__ == '__main__':
# First seed path version
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
if (seed_path / ood_monitor_file).exists():
continue
# retrieve model class
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
# Load both agents
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents, additional_agent_placeholder=None,
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
# Init Env
with env_map[env_path.name][0](**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=False)[0] for j, model in enumerate(models)]
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
gc.collect()
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / ood_monitor_file).exists())
result = pool.starmap(load_model_run_study,
it.product(paths,
(env_map[env_path.name][0],),
(observation_modes[observation_mode],))
)
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(seed_path)
# Plotting
if True: