new observation properties for testing of technical limitations

This commit is contained in:
Steffen Illium
2021-11-05 15:59:19 +01:00
parent b5c6105b7b
commit d69cf75c15
9 changed files with 424 additions and 263 deletions

View File

@ -26,16 +26,12 @@ from environments.factory.factory_dirt import DirtProperties, DirtFactory
from environments.factory.factory_dirt_item import DirtItemFactory
from environments.factory.factory_item import ItemProperties, ItemFactory
from environments.logging.monitor import MonitorCallback
from environments.utility_classes import MovementProperties
from environments.utility_classes import MovementProperties, ObservationProperties, AgentRenderOptions
import pickle
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
import pandas as pd
import seaborn as sns
# Define a global studi save path
start_time = 163519000 # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
"""
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
but never saw each other in training.
@ -68,6 +64,10 @@ There are further distinctions to be made:
- We are out of distribution.
"""
n_agents = 4
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
baseline_monitor_file = 'e_1_baseline_monitor.pick'
def policy_model_kwargs():
return dict(ent_coef=0.05)
@ -92,11 +92,96 @@ def encapsule_env_factory(env_fctry, env_kwrgs):
return _init
def load_model_run_baseline(seed_path, env_to_run):
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
model = model_cls.load(seed_path / 'model.zip')
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env_factory.step(action)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
# del model, env_kwargs, env_factory
# import gc
# gc.collect()
def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
global model_cls
# retrieve model class
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
# Load both agents
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
# Init Env
with env_to_run(**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
try:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=False)[0] for j, model in enumerate(models)]
except ValueError as e:
print(e)
print('Env_Kwargs are:\n')
print(env_kwargs)
print('Path is:\n')
print(seed_path)
exit()
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
gc.collect()
if __name__ == '__main__':
train_steps = 8e5
# Define a global studi save path
start_time = '900000' # int(time.time())
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
# Define Global Env Parameters
# Define properties object parameters
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2
)
move_props = MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False)
@ -108,33 +193,67 @@ if __name__ == '__main__':
item_props = ItemProperties(n_items=10, agent_can_interact=True,
spawn_frequency=30, n_drop_off_locations=2,
max_agent_inventory_capacity=15)
factory_kwargs = dict(n_agents=1,
pomdp_r=2, max_steps=400, parse_doors=True,
level_name='rooms', frames_to_stack=3,
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
cast_shadows=True, doors_have_area=False, verbose=False,
movement_properties=move_props
factory_kwargs = dict(n_agents=1, max_steps=400, parse_doors=True,
level_name='rooms', record_episodes=False, doors_have_area=False,
verbose=False,
mv_prop=move_props,
obs_prop=obs_props
)
# Bundle both environments with global kwargs and parameters
env_map = {'dirt': (DirtFactory, dict(dirt_properties=dirt_props, **factory_kwargs)),
'item': (ItemFactory, dict(item_properties=item_props, **factory_kwargs)),
'itemdirt': (DirtItemFactory, dict(dirt_properties=dirt_props, item_properties=item_props,
env_map = {'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
**factory_kwargs)),
'item': (ItemFactory, dict(item_prop=item_props,
**factory_kwargs)),
'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props,
item_prop=item_props,
**factory_kwargs))}
env_names = list(env_map.keys())
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {
# Fill-value = 0
# DEACTIVATED 'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
# DEACTIVATED 'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
# Fill-value = 1
# DEACTIVATED 'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
# Fill-value = N(0, 1)
'seperate_N': dict(additional_env_kwargs=dict(additional_agent_placeholder='N')),
# Further Adjustments are done post-training
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
),
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
),
# No further adjustment needed
'no_obs': {}
'no_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)
}
# Train starts here ############################################################
@ -223,52 +342,27 @@ if __name__ == '__main__':
# Evaluation starts here #####################################################
# First Iterate over every model and monitor "as trained"
baseline_monitor_file = 'e_1_baseline_monitor.pick'
if True:
render = False
for observation_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
# For trained policy in study_root_path / identifier
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# Iteration
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# retrieve model class
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
# Load both agents
model = model_cls.load(seed_path / 'model.zip')
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
with env_map[env_path.name][0](**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(100):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
action = model.predict(env_state, deterministic=True)[0]
env_state, step_r, done_bool, info_obj = env_factory.step(action)
monitor.read_info(0, info_obj)
rew += step_r
if render:
env_factory.render()
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del model, env_kwargs, env_factory
import gc
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / baseline_monitor_file).exists())
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
result = pool.starmap(load_model_run_baseline,
it.product(paths,
(env_map[env_path.name][0],))
)
gc.collect()
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(seed_path)
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
n_agents = 4
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
if True:
for observation_mode in observation_modes:
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
@ -279,44 +373,18 @@ if __name__ == '__main__':
# First seed path version
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
if (seed_path / ood_monitor_file).exists():
continue
# retrieve model class
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
# Load both agents
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents, additional_agent_placeholder=None,
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
# Init Env
with env_map[env_path.name][0](**env_kwargs) as env_factory:
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env_factory.reset()
rew, done_bool = 0, False
while not done_bool:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=False)[0] for j, model in enumerate(models)]
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
monitor.read_info(0, info_obj)
rew += step_r
if done_bool:
monitor.read_done(0, done_bool)
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
del models, env_kwargs, env_factory
import gc
gc.collect()
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / ood_monitor_file).exists())
result = pool.starmap(load_model_run_study,
it.product(paths,
(env_map[env_path.name][0],),
(observation_modes[observation_mode],))
)
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(seed_path)
# Plotting
if True: