new plotting, omit_agent_obs

This commit is contained in:
steffen-illium
2021-06-02 18:12:56 +02:00
parent 8810955e86
commit b72013407e
5 changed files with 79 additions and 20 deletions

@ -54,6 +54,12 @@ class Register:
self_with_additional_items = self + other
return self_with_additional_items
def keys(self):
return self._register.keys()
def items(self):
return self._register.items()
def __getitem__(self, item):
return self._register[item]
@ -103,7 +109,8 @@ class BaseFactory(gym.Env):
@property
def observation_space(self):
if self.pomdp_radius:
return spaces.Box(low=0, high=1, shape=(self._state.shape[0], self.pomdp_radius * 2 + 1,
agent_slice = self.n_agents if self.omit_agent_slice_in_obs else 0
return spaces.Box(low=0, high=1, shape=(self._state.shape[0] - agent_slice, self.pomdp_radius * 2 + 1,
self.pomdp_radius * 2 + 1), dtype=np.float32)
else:
space = spaces.Box(low=0, high=1, shape=self._state.shape, dtype=np.float32)
@ -114,13 +121,15 @@ class BaseFactory(gym.Env):
return self._actions.movement_actions
def __init__(self, level='simple', n_agents=1, max_steps=int(5e2), pomdp_radius: Union[None, int] = None,
allow_square_movement=True, allow_diagonal_movement=True, allow_no_op=True, **kwargs):
allow_square_movement=True, allow_diagonal_movement=True, allow_no_op=True,
omit_agent_slice_in_obs=False, **kwargs):
self.allow_no_op = allow_no_op
self.allow_diagonal_movement = allow_diagonal_movement
self.allow_square_movement = allow_square_movement
self.n_agents = n_agents
self.max_steps = max_steps
self.pomdp_radius = pomdp_radius
self.omit_agent_slice_in_obs = omit_agent_slice_in_obs
self.done_at_collision = False
_actions = Actions(allow_square_movement=self.allow_square_movement,
@ -132,6 +141,8 @@ class BaseFactory(gym.Env):
h.parse_level(Path(__file__).parent / h.LEVELS_DIR / f'{level}.txt')
)
self._state_slices = StateSlice(n_agents)
if 'additional_slices' in kwargs:
self._state_slices.register_additional_items(kwargs.get('additional_slices'))
self.reset()
@property
@ -162,7 +173,7 @@ class BaseFactory(gym.Env):
# state.shape = level, agent 1,..., agent n,
self._state = np.concatenate((np.expand_dims(self._level, axis=0), agents), axis=0)
# Returns State
return self._return_state()
return None
def _return_state(self):
if self.pomdp_radius:
@ -181,7 +192,15 @@ class BaseFactory(gym.Env):
obs = obs_padded
else:
obs = self._state
return obs
if self.omit_agent_slice_in_obs:
if obs.shape != (3, 5, 5):
print('Shiiiiiit')
obs_new = obs[[key for key, val in self._state_slices.items() if 'agent' not in val]]
if obs_new.shape != self.observation_space.shape:
print('Shiiiiiit')
return obs_new
else:
return obs
def do_additional_actions(self, agent_i: int, action: int) -> ((int, int), bool):
raise NotImplementedError

@ -37,8 +37,7 @@ class SimpleFactory(BaseFactory):
self.dirt_properties = dirt_properties
self.verbose = verbose
self.max_dirt = 20
super(SimpleFactory, self).__init__(*args, **kwargs)
self._state_slices.register_additional_items('dirt')
super(SimpleFactory, self).__init__(*args, additional_slices='dirt', **kwargs)
self._renderer = None # expensive - don't use it when not required !
def render(self):

@ -12,12 +12,11 @@ class MonitorCallback(BaseCallback):
ext = 'png'
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
def __init__(self, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_df = pd.DataFrame()
self._monitor_dict = dict()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False

@ -26,18 +26,19 @@ def plot(filepath, ext='png'):
plt.clf()
def prepare_plot(filepath, results_df, ext='png'):
results_df.Measurement = results_df.Measurement.str.replace('_', '-')
hue_order = sorted(list(results_df.Measurement.unique()))
def prepare_plot(filepath, results_df, ext='png', hue='Measurement', style=None):
df = results_df.copy()
df[hue] = df[hue].str.replace('_', '-')
hue_order = sorted(list(df[hue].unique()))
try:
sns.set(rc={'text.usetex': True}, style='whitegrid')
sns.lineplot(data=results_df, x='Episode', y='Score', hue='Measurement',
ci=95, palette=PALETTE, hue_order=hue_order)
sns.lineplot(data=df, x='Episode', y='Score', ci=95, palette=PALETTE,
hue_order=hue_order, hue=hue, style=style)
plot(filepath, ext=ext) # plot raises errors not lineplot!
except (FileNotFoundError, RuntimeError):
print('Struggling to plot Figure using LaTeX - going back to normal.')
plt.close('all')
sns.set(rc={'text.usetex': False}, style='whitegrid')
sns.lineplot(data=results_df, x='Episode', y='Score', hue='Measurement',
sns.lineplot(data=df, x='Episode', y='Score', hue=hue, style=style,
ci=95, palette=PALETTE, hue_order=hue_order)
plot(filepath, ext=ext)

53
main.py

@ -1,12 +1,13 @@
import pickle
import warnings
from typing import Union
from typing import Union, List
from os import PathLike
from pathlib import Path
import time
import pandas as pd
from stable_baselines3.common.callbacks import CallbackList
from stable_baselines3.common.vec_env import VecFrameStack, DummyVecEnv
from environments.factory.simple_factory import DirtProperties, SimpleFactory
from environments.helpers import IGNORED_DF_COLUMNS
@ -41,26 +42,64 @@ def combine_runs(run_path: Union[str, PathLike]):
value_vars=columns, var_name="Measurement",
value_name="Score")
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
#df_melted['Episode'] = df_melted['Episode'] * skip_n # only needed for old version
prepare_plot(run_path / f'{run_path.name}_monitor_lineplot.png', df_melted)
print('Plotting done.')
def compare_runs(run_path: Path, run_identifier: int, parameter: Union[str, List[str]]):
run_path = Path(run_path)
df_list = list()
parameter = list(parameter) if isinstance(parameter, str) else parameter
for path in run_path.iterdir():
if path.is_dir() and str(run_identifier) in path.name:
for run, monitor_file in enumerate(path.rglob('monitor_*.pick')):
with monitor_file.open('rb') as f:
monitor_df = pickle.load(f)
monitor_df['run'] = run
monitor_df['model'] = path.name.split('_')[0]
monitor_df = monitor_df.fillna(0)
df_list.append(monitor_df)
df = pd.concat(df_list, ignore_index=True)
df = df.fillna(0).rename(columns={'episode': 'Episode', 'run': 'Run', 'model': 'Model'})
columns = [col for col in df.columns if col in parameter]
roll_n = 30
skip_n = 10
non_overlapp_window = df.groupby(['Model', 'Run', 'Episode']).rolling(roll_n, min_periods=1).mean()
df_melted = non_overlapp_window[columns].reset_index().melt(id_vars=['Episode', 'Run', 'Model'],
value_vars=columns, var_name="Measurement",
value_name="Score")
df_melted = df_melted[df_melted['Episode'] % skip_n == 0]
style = 'Measurement' if len(columns) > 1 else None
prepare_plot(run_path / f'{run_identifier}_compare_{parameter}.png', df_melted, hue='Model', style=style)
print('Plotting done.')
if __name__ == '__main__':
from stable_baselines3 import PPO, DQN, A2C
from algorithms.dqn_reg import RegDQN
dirt_props = DirtProperties()
time_stamp = int(time.time())
out_path = None
for modeL_type in [A2C, PPO, DQN]:
for modeL_type in [PPO, A2C, RegDQN, DQN]:
for seed in range(5):
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400,
allow_diagonal_movement=False, allow_no_op=False, verbose=False)
allow_diagonal_movement=True, allow_no_op=False, verbose=False,
omit_agent_slice_in_obs=True)
vec_wrap = DummyVecEnv([lambda: env for _ in range(4)])
stack_wrap = VecFrameStack(vec_wrap, n_stack=4, channels_order='first')
model = modeL_type("MlpPolicy", env, verbose=1, seed=seed, device='cpu')
@ -70,7 +109,7 @@ if __name__ == '__main__':
out_path /= identifier
callbacks = CallbackList(
[MonitorCallback(env, filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
[MonitorCallback(filepath=out_path / f'monitor_{identifier}.pick', plotting=False)]
)
model.learn(total_timesteps=int(2e5), callback=callbacks)
@ -82,3 +121,5 @@ if __name__ == '__main__':
if out_path:
combine_runs(out_path.parent)
if out_path:
compare_runs(Path('debug_out'), time_stamp, 'step_reward')