Rework of Observations and Entity Differentiation, lazy obs build by notification

This commit is contained in:
Steffen Illium
2021-12-22 10:48:36 +01:00
parent 7f7a3d9a3b
commit b43f595207
14 changed files with 961 additions and 487 deletions

View File

@ -1,7 +1,9 @@
import abc
import enum
import time
from collections import defaultdict
from enum import Enum
from itertools import chain
from pathlib import Path
from typing import List, Union, Iterable, Dict
import numpy as np
@ -14,7 +16,8 @@ from environments.factory.base.shadow_casting import Map
from environments.helpers import Constants as c, Constants
from environments import helpers as h
from environments.factory.base.objects import Agent, Tile, Action
from environments.factory.base.registers import Actions, Entities, Agents, Doors, FloorTiles, WallTiles, PlaceHolders
from environments.factory.base.registers import Actions, Entities, Agents, Doors, FloorTiles, WallTiles, PlaceHolders, \
GlobalPositions
from environments.utility_classes import MovementProperties, ObservationProperties, MarlFrameStack
from environments.utility_classes import AgentRenderOptions as a_obs
@ -30,17 +33,31 @@ class BaseFactory(gym.Env):
def action_space(self):
return spaces.Discrete(len(self._actions))
@property
def named_action_space(self):
return {x.identifier.value: idx for idx, x in enumerate(self._actions.values())}
@property
def observation_space(self):
if r := self._pomdp_r:
z = self._obs_cube.shape[0]
xy = r*2 + 1
level_shape = (z, xy, xy)
obs, _ = self._build_observations()
if self.n_agents > 1:
shape = obs[0].shape
else:
level_shape = self._obs_cube.shape
space = spaces.Box(low=0, high=1, shape=level_shape, dtype=np.float32)
shape = obs.shape
space = spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
return space
@property
def named_observation_space(self):
# Build it
_, named_obs = self._build_observations()
if self.n_agents > 1:
# Only return the first named obs space, as their structure at the moment is same.
return [{key.name: val for key, val in named_ob.items()} for named_ob in named_obs.values()][0]
else:
return {key.name: val for key, val in named_obs.items()}
@property
def pomdp_diameter(self):
return self._pomdp_r * 2 + 1
@ -86,11 +103,14 @@ class BaseFactory(gym.Env):
self.obs_prop = obs_prop
self.level_name = level_name
self._level_shape = None
self._obs_shape = None
self.verbose = verbose
self._renderer = None # expensive - don't use it when not required !
self._entities = Entities()
self.n_agents = n_agents
level_filepath = Path(__file__).parent.parent / h.LEVELS_DIR / f'{self.level_name}.txt'
self._parsed_level = h.parse_level(level_filepath)
self.max_steps = max_steps
self._pomdp_r = self.obs_prop.pomdp_r
@ -114,10 +134,12 @@ class BaseFactory(gym.Env):
# Objects
self._entities = Entities()
# Level
level_filepath = Path(__file__).parent.parent / h.LEVELS_DIR / f'{self.level_name}.txt'
parsed_level = h.parse_level(level_filepath)
level_array = h.one_hot_level(parsed_level)
level_array = h.one_hot_level(self._parsed_level)
level_array = np.pad(level_array, self.obs_prop.pomdp_r, 'constant', constant_values=1)
self._level_shape = level_array.shape
self._obs_shape = self._level_shape if not self.obs_prop.pomdp_r else (self.pomdp_diameter, ) * 2
# Walls
walls = WallTiles.from_argwhere_coordinates(
@ -134,13 +156,14 @@ class BaseFactory(gym.Env):
self._entities.register_additional_items({c.FLOOR: floor})
# NOPOS
self._NO_POS_TILE = Tile(c.NO_POS.value)
self._NO_POS_TILE = Tile(c.NO_POS.value, None)
# Doors
if self.parse_doors:
parsed_doors = h.one_hot_level(parsed_level, c.DOOR)
parsed_doors = h.one_hot_level(self._parsed_level, c.DOOR)
parsed_doors = np.pad(parsed_doors, self.obs_prop.pomdp_r, 'constant', constant_values=0)
if np.any(parsed_doors):
door_tiles = [floor.by_pos(pos) for pos in np.argwhere(parsed_doors == c.OCCUPIED_CELL.value)]
door_tiles = [floor.by_pos(tuple(pos)) for pos in np.argwhere(parsed_doors == c.OCCUPIED_CELL.value)]
doors = Doors.from_tiles(door_tiles, self._level_shape,
entity_kwargs=dict(context=floor)
)
@ -153,12 +176,11 @@ class BaseFactory(gym.Env):
# Agents
agents_to_spawn = self.n_agents-len(self._injected_agents)
agents_kwargs = dict(level_shape=self._level_shape,
individual_slices=self.obs_prop.render_agents == a_obs.SEPERATE,
hide_from_obs_builder=self.obs_prop.render_agents == a_obs.LEVEL,
is_observable=self.obs_prop.render_agents != a_obs.NOT)
agents_kwargs = dict(individual_slices=self.obs_prop.render_agents == a_obs.SEPERATE,
hide_from_obs_builder=self.obs_prop.render_agents in [a_obs.NOT, a_obs.LEVEL],
)
if agents_to_spawn:
agents = Agents.from_tiles(floor.empty_tiles[:agents_to_spawn], **agents_kwargs)
agents = Agents.from_tiles(floor.empty_tiles[:agents_to_spawn], self._level_shape, **agents_kwargs)
else:
agents = Agents(**agents_kwargs)
if self._injected_agents:
@ -173,10 +195,10 @@ class BaseFactory(gym.Env):
# TODO: Make this accept Lists for multiple placeholders
# Empty Observations with either [0, 1, N(0, 1)]
placeholder = PlaceHolders.from_tiles([self._NO_POS_TILE], self._level_shape,
entity_kwargs=dict(
fill_value=self.obs_prop.additional_agent_placeholder)
)
placeholder = PlaceHolders.from_values(self.obs_prop.additional_agent_placeholder, self._level_shape,
entity_kwargs=dict(
fill_value=self.obs_prop.additional_agent_placeholder)
)
self._entities.register_additional_items({c.AGENT_PLACEHOLDER: placeholder})
@ -184,24 +206,22 @@ class BaseFactory(gym.Env):
if additional_entities := self.additional_entities:
self._entities.register_additional_items(additional_entities)
if self.obs_prop.show_global_position_info:
global_positions = GlobalPositions(self._level_shape)
obs_shape_2d = self._level_shape if not self._pomdp_r else ((self.pomdp_diameter,) * 2)
global_positions.spawn_GlobalPositionObjects(obs_shape_2d, self[c.AGENT])
self._entities.register_additional_items({c.GLOBAL_POSITION: global_positions})
# Return
return self._entities
def _init_obs_cube(self):
arrays = self._entities.obs_arrays
obs_cube_z = sum([a.shape[0] if not self[key].is_per_agent else 1 for key, a in arrays.items()])
obs_cube_z += 1 if self.obs_prop.show_global_position_info else 0
self._obs_cube = np.zeros((obs_cube_z, *self._level_shape), dtype=np.float32)
def reset(self) -> (np.ndarray, int, bool, dict):
def reset(self) -> (np.typing.ArrayLike, int, bool, dict):
_ = self._base_init_env()
self._init_obs_cube()
self.do_additional_reset()
self._steps = 0
obs = self._get_observations()
obs, _ = self._build_observations()
return obs
def step(self, actions):
@ -264,7 +284,7 @@ class BaseFactory(gym.Env):
# Post step Hook for later use
info.update(self.hook_post_step())
obs = self._get_observations()
obs, _ = self._build_observations()
return obs, reward, done, info
@ -284,141 +304,120 @@ class BaseFactory(gym.Env):
else:
return c.NOT_VALID
def _get_observations(self) -> np.ndarray:
state_array_dict = self._entities.obs_arrays
if self.n_agents == 1:
obs = self._build_per_agent_obs(self[c.AGENT][0], state_array_dict)
elif self.n_agents >= 2:
obs = np.stack([self._build_per_agent_obs(agent, state_array_dict) for agent in self[c.AGENT]])
else:
raise ValueError('n_agents cannot be smaller than 1!!')
return obs
def _build_observations(self) -> np.typing.ArrayLike:
# Observation dict:
per_agent_expl_idx = dict()
per_agent_obsn = dict()
# Generel Observations
lvl_obs = self[c.WALLS].as_array()
door_obs = self[c.DOORS].as_array()
agent_obs = self[c.AGENT].as_array() if self.obs_prop.render_agents != a_obs.NOT else None
placeholder_obs = self[c.AGENT_PLACEHOLDER].as_array() if self[c.AGENT_PLACEHOLDER] else None
add_obs_dict = self._additional_observations()
def _build_per_agent_obs(self, agent: Agent, state_array_dict) -> np.ndarray:
agent_pos_is_omitted = False
agent_omit_idx = None
if self.obs_prop.omit_agent_self and self.n_agents == 1:
pass
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents in [a_obs.COMBINED, ] and self.n_agents > 1:
state_array_dict[c.AGENT][0, agent.x, agent.y] -= agent.encoding
agent_pos_is_omitted = True
elif self.obs_prop.omit_agent_self and self.obs_prop.render_agents == a_obs.SEPERATE and self.n_agents > 1:
agent_omit_idx = next((i for i, a in enumerate(self[c.AGENT]) if a == agent))
running_idx, shadowing_idxs, can_be_shadowed_idxs = 0, [], []
self._obs_cube[:] = 0
# FIXME: Refactor this! Make a globally build observation, then add individual per-agent-obs
for key, array in state_array_dict.items():
# Flush state array object representation to obs cube
if not self[key].hide_from_obs_builder:
if self[key].is_per_agent:
per_agent_idx = self[key].idx_by_entity(agent)
z = 1
self._obs_cube[running_idx: running_idx+z] = array[per_agent_idx]
else:
if key == c.AGENT and agent_omit_idx is not None:
z = array.shape[0] - 1
for array_idx in range(array.shape[0]):
self._obs_cube[running_idx: running_idx+z] = array[[x for x in range(array.shape[0])
if x != agent_omit_idx]]
# Agent OBS are combined
elif key == c.AGENT and self.obs_prop.omit_agent_self \
and self.obs_prop.render_agents == a_obs.COMBINED:
z = 1
self._obs_cube[running_idx: running_idx + z] = array
# Each Agent is rendered on a seperate array slice
for agent_idx, agent in enumerate(self[c.AGENT]):
obs_dict = dict()
# Build Agent Observations
if self.obs_prop.render_agents != a_obs.NOT:
if self.obs_prop.omit_agent_self:
if self.obs_prop.render_agents == a_obs.SEPERATE:
agent_obs = np.take(agent_obs, [x for x in range(self.n_agents) if x != agent_idx], axis=0)
else:
z = array.shape[0]
self._obs_cube[running_idx: running_idx + z] = array
# Define which OBS SLices cast a Shadow
if self[key].is_blocking_light:
for i in range(z):
shadowing_idxs.append(running_idx + i)
# Define which OBS SLices are effected by shadows
if self[key].can_be_shadowed:
for i in range(z):
can_be_shadowed_idxs.append(running_idx + i)
running_idx += z
agent_obs = agent_obs.copy()
agent_obs[(0, *agent.pos)] -= agent.encoding
if agent_pos_is_omitted:
state_array_dict[c.AGENT][0, agent.x, agent.y] += agent.encoding
if self._pomdp_r:
obs = self._do_pomdp_obs_cutout(agent, self._obs_cube)
else:
obs = self._obs_cube
obs = obs.copy()
if self.obs_prop.cast_shadows:
obs_block_light = [obs[idx] != c.OCCUPIED_CELL.value for idx in shadowing_idxs]
door_shadowing = False
if self.parse_doors:
if doors := self[c.DOORS]:
if door := doors.by_pos(agent.pos):
if door.is_closed:
for group in door.connectivity_subgroups:
if agent.last_pos not in group:
door_shadowing = True
if self._pomdp_r:
blocking = [tuple(np.subtract(x, agent.pos) + (self._pomdp_r, self._pomdp_r))
for x in group]
xs, ys = zip(*blocking)
else:
xs, ys = zip(*group)
# noinspection PyUnresolvedReferences
obs_block_light[0][xs, ys] = False
light_block_map = Map((np.prod(obs_block_light, axis=0) != True).astype(int))
if self._pomdp_r:
light_block_map = light_block_map.do_fov(self._pomdp_r, self._pomdp_r, max(self._level_shape))
else:
light_block_map = light_block_map.do_fov(*agent.pos, max(self._level_shape))
if door_shadowing:
# noinspection PyUnboundLocalVariable
light_block_map[xs, ys] = 0
agent.temp_light_map = light_block_map
for obs_idx in can_be_shadowed_idxs:
obs[obs_idx] = ((obs[obs_idx] * light_block_map) + 0.) - (1 - light_block_map) # * obs[0])
else:
pass
# Agents observe other agents as wall
if self.obs_prop.render_agents == a_obs.LEVEL and self.n_agents > 1:
other_agent_obs = self[c.AGENT].as_array()
if self.obs_prop.omit_agent_self:
other_agent_obs[:, agent.x, agent.y] -= agent.encoding
# Build Level Observations
if self.obs_prop.render_agents == a_obs.LEVEL:
lvl_obs = lvl_obs.copy()
lvl_obs += agent_obs
obs_dict[c.WALLS] = lvl_obs
if self.obs_prop.render_agents in [a_obs.SEPERATE, a_obs.COMBINED]:
obs_dict[c.AGENT] = agent_obs
if self[c.AGENT_PLACEHOLDER]:
obs_dict[c.AGENT_PLACEHOLDER] = placeholder_obs
obs_dict[c.DOORS] = door_obs
obs_dict.update(add_obs_dict)
observations = np.vstack(list(obs_dict.values()))
if self.obs_prop.pomdp_r:
oobs = self._do_pomdp_obs_cutout(agent, other_agent_obs)[0]
# noinspection PyUnresolvedReferences
mask = (oobs != c.SHADOWED_CELL.value).astype(int)
obs[0] += oobs * mask
observations = self._do_pomdp_cutout(agent, observations)
raw_obs = self._additional_raw_observations(agent)
observations = np.vstack((observations, *list(raw_obs.values())))
keys = list(chain(obs_dict.keys(), raw_obs.keys()))
idxs = np.cumsum([x.shape[0] for x in chain(obs_dict.values(), raw_obs.values())]) - 1
per_agent_expl_idx[agent.name] = {key: list(range(a, b)) for key, a, b in
zip(keys, idxs, list(idxs[1:]) + [idxs[-1]+1, ])}
# Shadow Casting
try:
light_block_obs = [obs_idx for key, obs_idx in per_agent_expl_idx[agent.name].items()
if self[key].is_blocking_light]
# Flatten
light_block_obs = [x for y in light_block_obs for x in y]
shadowed_obs = [obs_idx for key, obs_idx in per_agent_expl_idx[agent.name].items()
if self[key].can_be_shadowed]
# Flatten
shadowed_obs = [x for y in shadowed_obs for x in y]
except AttributeError as e:
print('Check your Keys! Only use Constants as Keys!')
print(e)
raise e
if self.obs_prop.cast_shadows:
obs_block_light = observations[light_block_obs] != c.OCCUPIED_CELL.value
door_shadowing = False
if self.parse_doors:
if doors := self[c.DOORS]:
if door := doors.by_pos(agent.pos):
if door.is_closed:
for group in door.connectivity_subgroups:
if agent.last_pos not in group:
door_shadowing = True
if self._pomdp_r:
blocking = [
tuple(np.subtract(x, agent.pos) + (self._pomdp_r, self._pomdp_r))
for x in group]
xs, ys = zip(*blocking)
else:
xs, ys = zip(*group)
# noinspection PyUnresolvedReferences
obs_block_light[:, xs, ys] = False
light_block_map = Map((np.prod(obs_block_light, axis=0) != True).astype(int).squeeze())
if self._pomdp_r:
light_block_map = light_block_map.do_fov(self._pomdp_r, self._pomdp_r, max(self._level_shape))
else:
light_block_map = light_block_map.do_fov(*agent.pos, max(self._level_shape))
if door_shadowing:
# noinspection PyUnboundLocalVariable
light_block_map[xs, ys] = 0
agent.temp_light_map = light_block_map.copy()
observations[shadowed_obs] = ((observations[shadowed_obs] * light_block_map) + 0.) - (1 - light_block_map)
else:
obs[0] += other_agent_obs
pass
# Additional Observation:
for additional_obs in self.additional_obs_build():
obs[running_idx:running_idx+additional_obs.shape[0]] = additional_obs
running_idx += additional_obs.shape[0]
for additional_per_agent_obs in self.additional_per_agent_obs_build(agent):
obs[running_idx:running_idx + additional_per_agent_obs.shape[0]] = additional_per_agent_obs
running_idx += additional_per_agent_obs.shape[0]
per_agent_obsn[agent.name] = observations
return obs
if self.n_agents == 1:
agent_name = self[c.AGENT][0].name
obs, explained_idx = per_agent_obsn[agent_name], per_agent_expl_idx[agent_name]
elif self.n_agents >= 2:
obs, explained_idx = np.stack(list(per_agent_obsn.values())), per_agent_expl_idx
else:
raise ValueError
def _do_pomdp_obs_cutout(self, agent, obs_to_be_padded):
return obs, explained_idx
def _do_pomdp_cutout(self, agent, obs_to_be_padded):
assert obs_to_be_padded.ndim == 3
r, d = self._pomdp_r, self.pomdp_diameter
x0, x1 = max(0, agent.x - r), min(agent.x + r + 1, self._level_shape[0])
y0, y1 = max(0, agent.y - r), min(agent.y + r + 1, self._level_shape[1])
# Other Agent Obs = oobs
oobs = obs_to_be_padded[:, x0:x1, y0:y1]
if oobs.shape[0:] != (d, d):
if oobs.shape[1:] != (d, d):
if xd := oobs.shape[1] % d:
if agent.x > r:
x0_pad = 0
@ -478,7 +477,7 @@ class BaseFactory(gym.Env):
if doors := self[c.DOORS]:
if self.doors_have_area:
if door := doors.by_pos(new_tile.pos):
if door.can_collide:
if door.is_open:
return agent.tile, c.NOT_VALID
else: # door.is_closed:
pass
@ -569,7 +568,7 @@ class BaseFactory(gym.Env):
if not self._renderer: # lazy init
from environments.factory.base.renderer import Renderer, RenderEntity
global Renderer, RenderEntity
height, width = self._obs_cube.shape[1:]
height, width = self._level_shape
self._renderer = Renderer(width, height, view_radius=self._pomdp_r, fps=5)
# noinspection PyUnboundLocalVariable
@ -636,20 +635,6 @@ class BaseFactory(gym.Env):
# Functions which provide additions to functions of the base class
# Always call super!!!!!!
@abc.abstractmethod
def additional_obs_build(self) -> List[np.ndarray]:
return []
def additional_per_agent_obs_build(self, agent) -> List[np.ndarray]:
additional_per_agent_obs = []
if self.obs_prop.show_global_position_info:
pos_array = np.zeros(self.observation_space.shape[1:])
for xy in range(1):
pos_array[0, xy] = agent.pos[xy] / self._level_shape[xy]
additional_per_agent_obs.append(pos_array)
return additional_per_agent_obs
@abc.abstractmethod
def do_additional_reset(self) -> None:
pass
@ -666,6 +651,17 @@ class BaseFactory(gym.Env):
def check_additional_done(self) -> bool:
return False
@abc.abstractmethod
def _additional_observations(self) -> Dict[Constants, np.typing.ArrayLike]:
return {}
@abc.abstractmethod
def _additional_raw_observations(self, agent) -> Dict[Constants, np.typing.ArrayLike]:
additional_raw_observations = {}
if self.obs_prop.show_global_position_info:
additional_raw_observations.update({c.GLOBAL_POSITION: self[c.GLOBAL_POSITION].by_entity(agent).as_array()})
return additional_raw_observations
@abc.abstractmethod
def calculate_additional_reward(self, agent: Agent) -> (int, dict):
return 0, {}