new observation properties for testing of technical limitations '' Debuggings
This commit is contained in:
@ -96,7 +96,7 @@ def load_model_run_baseline(seed_path, env_to_run):
|
||||
# retrieve model class
|
||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
|
||||
# Load both agents
|
||||
model = model_cls.load(seed_path / 'model.zip')
|
||||
model = model_cls.load(seed_path / 'model.zip', device='cpu')
|
||||
# Load old env kwargs
|
||||
with next(seed_path.glob('*.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
@ -128,7 +128,7 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
|
||||
# retrieve model class
|
||||
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in seed_path.parent.name)
|
||||
# Load both agents
|
||||
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
|
||||
models = [model_cls.load(seed_path / 'model.zip', device='cpu') for _ in range(n_agents)]
|
||||
# Load old env kwargs
|
||||
with next(seed_path.glob('*.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
@ -179,6 +179,7 @@ if __name__ == '__main__':
|
||||
# Define properties object parameters
|
||||
obs_props = ObservationProperties(render_agents=AgentRenderOptions.NOT,
|
||||
omit_agent_self=True,
|
||||
additional_agent_placeholder=None,
|
||||
frames_to_stack=3,
|
||||
pomdp_r=2
|
||||
)
|
||||
@ -202,12 +203,12 @@ if __name__ == '__main__':
|
||||
|
||||
# Bundle both environments with global kwargs and parameters
|
||||
env_map = {'dirt': (DirtFactory, dict(dirt_prop=dirt_props,
|
||||
**factory_kwargs)),
|
||||
**factory_kwargs.copy())),
|
||||
'item': (ItemFactory, dict(item_prop=item_props,
|
||||
**factory_kwargs)),
|
||||
**factory_kwargs.copy())),
|
||||
'itemdirt': (DirtItemFactory, dict(dirt_prop=dirt_props,
|
||||
item_prop=item_props,
|
||||
**factory_kwargs))}
|
||||
**factory_kwargs.copy()))}
|
||||
env_names = list(env_map.keys())
|
||||
|
||||
# Define parameter versions according with #1,2[1,0,N],3
|
||||
@ -240,6 +241,7 @@ if __name__ == '__main__':
|
||||
dict(obs_prop=ObservationProperties(
|
||||
render_agents=AgentRenderOptions.LEVEL,
|
||||
omit_agent_self=True,
|
||||
additional_agent_placeholder=None,
|
||||
frames_to_stack=3,
|
||||
pomdp_r=2)
|
||||
)
|
||||
@ -249,6 +251,7 @@ if __name__ == '__main__':
|
||||
post_training_kwargs=
|
||||
dict(obs_prop=ObservationProperties(
|
||||
render_agents=AgentRenderOptions.NOT,
|
||||
additional_agent_placeholder=None,
|
||||
omit_agent_self=True,
|
||||
frames_to_stack=3,
|
||||
pomdp_r=2)
|
||||
@ -259,18 +262,18 @@ if __name__ == '__main__':
|
||||
# Train starts here ############################################################
|
||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||
if True:
|
||||
for observation_mode in observation_modes.keys():
|
||||
for obs_mode in observation_modes.keys():
|
||||
for env_name in env_names:
|
||||
for model_cls in [h.MODEL_MAP['A2C'], h.MODEL_MAP['DQN']]:
|
||||
# Create an identifier, which is unique for every combination and easy to read in filesystem
|
||||
identifier = f'{model_cls.__name__}_{start_time}'
|
||||
# Train each combination per seed
|
||||
combination_path = study_root_path / observation_mode / env_name / identifier
|
||||
combination_path = study_root_path / obs_mode / env_name / identifier
|
||||
env_class, env_kwargs = env_map[env_name]
|
||||
env_kwargs = env_kwargs.copy()
|
||||
# Retrieve and set the observation mode specific env parameters
|
||||
if observation_mode_kwargs := observation_modes.get(observation_mode, None):
|
||||
if additional_env_kwargs := observation_mode_kwargs.get("additional_env_kwargs", None):
|
||||
env_kwargs.update(additional_env_kwargs)
|
||||
additional_kwargs = observation_modes.get(obs_mode, {}).get("additional_env_kwargs", {})
|
||||
env_kwargs.update(additional_kwargs)
|
||||
for seed in range(5):
|
||||
env_kwargs.update(env_seed=seed)
|
||||
# Output folder
|
||||
@ -320,7 +323,10 @@ if __name__ == '__main__':
|
||||
gc.collect()
|
||||
|
||||
# Compare performance runs, for each seed within a model
|
||||
compare_seed_runs(combination_path, use_tex=False)
|
||||
try:
|
||||
compare_seed_runs(combination_path, use_tex=False)
|
||||
except ValueError:
|
||||
pass
|
||||
# Better be save then sorry: Clean up!
|
||||
try:
|
||||
del env_kwargs
|
||||
@ -332,8 +338,11 @@ if __name__ == '__main__':
|
||||
|
||||
# Compare performance runs, for each model
|
||||
# FIXME: Check THIS!!!!
|
||||
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward',
|
||||
use_tex=False)
|
||||
try:
|
||||
compare_model_runs(study_root_path / obs_mode / env_name, f'{start_time}', 'step_reward',
|
||||
use_tex=False)
|
||||
except ValueError:
|
||||
pass
|
||||
pass
|
||||
pass
|
||||
pass
|
||||
@ -343,8 +352,8 @@ if __name__ == '__main__':
|
||||
# Evaluation starts here #####################################################
|
||||
# First Iterate over every model and monitor "as trained"
|
||||
if True:
|
||||
for observation_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||
for obs_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
||||
# For trained policy in study_root_path / identifier
|
||||
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
||||
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
||||
@ -364,8 +373,8 @@ if __name__ == '__main__':
|
||||
|
||||
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||
if True:
|
||||
for observation_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||
for obs_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == obs_mode)
|
||||
# For trained policy in study_root_path / identifier
|
||||
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
||||
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
||||
@ -381,7 +390,7 @@ if __name__ == '__main__':
|
||||
result = pool.starmap(load_model_run_study,
|
||||
it.product(paths,
|
||||
(env_map[env_path.name][0],),
|
||||
(observation_modes[observation_mode],))
|
||||
(observation_modes[obs_mode],))
|
||||
)
|
||||
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||
# load_model_run_study(seed_path)
|
||||
|
Reference in New Issue
Block a user