cleanup algos + adjusted renderer to support "ray casting"
This commit is contained in:
parent
8429e3db9d
commit
9e8d2ac1dc
40
algorithms/awr_learner.py
Normal file
40
algorithms/awr_learner.py
Normal file
@ -0,0 +1,40 @@
|
||||
from common import BaseLearner, TrajectoryBuffer
|
||||
|
||||
|
||||
class AWRLearner(BaseLearner):
|
||||
def __init__(self, *args, buffer_size=1e5, **kwargs):
|
||||
super(AWRLearner, self).__init__(*args, **kwargs)
|
||||
assert self.train_every[0] == 'episode', 'AWR only supports the episodic RL setting!'
|
||||
self.buffer = TrajectoryBuffer(buffer_size)
|
||||
|
||||
def train(self):
|
||||
# convert to trajectory format
|
||||
pass
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
sns.set(font_scale=1.25, rc={'text.usetex': True})
|
||||
data = np.array([[689, 74], [71, 647]])
|
||||
cats = ['Mask', 'No Mask']
|
||||
df = pd.DataFrame(data/np.sum(data), index=cats, columns=cats)
|
||||
|
||||
group_counts = ['{0:0.0f}'.format(value) for value in
|
||||
data.flatten()]
|
||||
group_percentages = [f'{value*100:.2f}' + r'$\%$' for value in
|
||||
data.flatten()/np.sum(data)]
|
||||
|
||||
labels = [f'{v1}\n{v2}' for v1, v2 in
|
||||
zip(group_counts,group_percentages)]
|
||||
labels = np.asarray(labels).reshape(2,2)
|
||||
|
||||
with sns.axes_style("white"):
|
||||
cmap = sns.diverging_palette(h_neg=100, h_pos=10, s=99, l=55, sep=3, as_cmap=True)
|
||||
sns.heatmap(data, annot=labels, fmt='', cmap='Set2_r', square=True, cbar=False, xticklabels=cats,yticklabels=cats)
|
||||
plt.title('Simple-CNN')
|
||||
plt.ylabel('True label')
|
||||
plt.xlabel('Predicted label')
|
||||
plt.tight_layout()
|
||||
plt.savefig('cnn.pdf', bbox_inches='tight')
|
@ -1,5 +1,5 @@
|
||||
from typing import NamedTuple, Union
|
||||
from collections import deque, OrderedDict
|
||||
from collections import deque, OrderedDict, defaultdict
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
@ -18,12 +18,13 @@ class Experience(NamedTuple):
|
||||
|
||||
|
||||
class BaseLearner:
|
||||
def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1):
|
||||
def __init__(self, env, n_agents=1, train_every=('step', 4), n_grad_steps=1, stack_n_frames=1):
|
||||
assert train_every[0] in ['step', 'episode'], 'train_every[0] must be one of ["step", "episode"]'
|
||||
self.env = env
|
||||
self.n_agents = n_agents
|
||||
self.n_grad_steps = n_grad_steps
|
||||
self.train_every = train_every
|
||||
self.stack_n_frames = deque(stack_n_frames)
|
||||
self.device = 'cpu'
|
||||
self.n_updates = 0
|
||||
self.step = 0
|
||||
@ -102,8 +103,8 @@ class BaseBuffer:
|
||||
def __len__(self):
|
||||
return len(self.experience)
|
||||
|
||||
def add(self, experience):
|
||||
self.experience.append(experience)
|
||||
def add(self, exp: Experience):
|
||||
self.experience.append(exp)
|
||||
|
||||
def sample(self, k, cer=4):
|
||||
sample = random.choices(self.experience, k=k-cer)
|
||||
@ -113,9 +114,22 @@ class BaseBuffer:
|
||||
actions = torch.tensor([e.action for e in sample]).long()
|
||||
rewards = torch.tensor([e.reward for e in sample]).float().view(-1, 1)
|
||||
dones = torch.tensor([e.done for e in sample]).float().view(-1, 1)
|
||||
#print(observations.shape, next_observations.shape, actions.shape, rewards.shape, dones.shape)
|
||||
return Experience(observations, next_observations, actions, rewards, dones)
|
||||
|
||||
|
||||
class TrajectoryBuffer(BaseBuffer):
|
||||
def __init__(self, size):
|
||||
super(TrajectoryBuffer, self).__init__(size)
|
||||
self.experience = defaultdict(list)
|
||||
|
||||
def add(self, exp: Experience):
|
||||
self.experience[exp.episode].append(exp)
|
||||
if len(self.experience) > self.size:
|
||||
oldest_traj_key = list(sorted(self.experience.keys()))[0]
|
||||
del self.experience[oldest_traj_key]
|
||||
|
||||
|
||||
def soft_update(local_model, target_model, tau):
|
||||
# taken from https://github.com/BY571/Munchausen-RL/blob/master/M-DQN.ipynb
|
||||
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
|
||||
@ -152,9 +166,10 @@ class BaseDDQN(BaseDQN):
|
||||
def __init__(self,
|
||||
backbone_dims=[3*5*5, 64, 64],
|
||||
value_dims=[64, 1],
|
||||
advantage_dims=[64, 9]):
|
||||
advantage_dims=[64, 9],
|
||||
activation='elu'):
|
||||
super(BaseDDQN, self).__init__(backbone_dims)
|
||||
self.net = mlp_maker(backbone_dims, flatten=True)
|
||||
self.net = mlp_maker(backbone_dims, activation=activation, flatten=True)
|
||||
self.value_head = mlp_maker(value_dims)
|
||||
self.advantage_head = mlp_maker(advantage_dims)
|
||||
|
||||
|
@ -25,7 +25,7 @@ class MQLearner(QLearner):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every[-1])
|
||||
|
||||
with torch.no_grad():
|
||||
q_target_next = self.target_q_net(experience.next_observation)
|
||||
|
@ -17,7 +17,7 @@ class QLearner(BaseLearner):
|
||||
self.q_net = q_net
|
||||
self.target_q_net = target_q_net
|
||||
self.target_q_net.eval()
|
||||
soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||
#soft_update(self.q_net, self.target_q_net, tau=1.0)
|
||||
self.buffer = BaseBuffer(buffer_size)
|
||||
self.target_update = target_update
|
||||
self.eps = eps_start
|
||||
@ -30,9 +30,7 @@ class QLearner(BaseLearner):
|
||||
self.reg_weight = reg_weight
|
||||
self.weight_decay = weight_decay
|
||||
self.lr = lr
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(),
|
||||
lr=self.lr,
|
||||
weight_decay=self.weight_decay)
|
||||
self.optimizer = torch.optim.AdamW(self.q_net.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
||||
self.max_grad_norm = max_grad_norm
|
||||
self.running_reward = deque(maxlen=5)
|
||||
self.running_loss = deque(maxlen=5)
|
||||
@ -103,20 +101,31 @@ class QLearner(BaseLearner):
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
from algorithms.common import BaseDDQN
|
||||
from algorithms.m_q_learner import MQLearner
|
||||
from algorithms.vdn_learner import VDNLearner
|
||||
from algorithms.udr_learner import UDRLearner
|
||||
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
dirt_props = DirtProperties(clean_amount=1, gain_amount=0.1, max_global_amount=20,
|
||||
max_local_amount=1, spawn_frequency=5, max_spawn_ratio=0.05,
|
||||
dirt_smear_amount=0.0)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2, max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
dqn, target_dqn = BaseDDQN(), BaseDDQN()
|
||||
learner = QLearner(dqn, target_dqn, env, 40000, target_update=3500, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64)
|
||||
env = SimpleFactory(n_agents=1, dirt_properties=dirt_props, pomdp_radius=2, max_steps=400, parse_doors=False,
|
||||
movement_properties=move_props, level_name='rooms', frames_to_stack=0,
|
||||
omit_agent_slice_in_obs=True, combin_agent_slices_in_obs=True, record_episodes=False
|
||||
)
|
||||
|
||||
obs_shape = np.prod(env.observation_space.shape)
|
||||
n_actions = env.action_space.n
|
||||
|
||||
dqn, target_dqn = BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu'),\
|
||||
BaseDDQN(backbone_dims=[obs_shape, 128, 128], advantage_dims=[128, n_actions], value_dims=[128,1], activation='leaky_relu')
|
||||
|
||||
learner = MQLearner(dqn, target_dqn, env, 50000, target_update=5000, lr=0.0007, gamma=0.99, n_agents=N_AGENTS, tau=0.95, max_grad_norm=10,
|
||||
train_every=('step', 4), eps_end=0.025, n_grad_steps=1, reg_weight=0.1, exploration_fraction=0.25, batch_size=64, weight_decay=1e-3)
|
||||
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||
learner.learn(100000)
|
||||
|
@ -1,48 +0,0 @@
|
||||
import torch
|
||||
from algorithms.q_learner import QLearner
|
||||
|
||||
|
||||
class QTRANLearner(QLearner):
|
||||
def __init__(self, *args, weight_opt=1., weigt_nopt=1., **kwargs):
|
||||
super(QTRANLearner, self).__init__(*args, **kwargs)
|
||||
assert self.n_agents >= 2, 'QTRANLearner requires more than one agent, use QLearner instead'
|
||||
self.weight_opt = weight_opt
|
||||
self.weigt_nopt = weigt_nopt
|
||||
|
||||
def _training_routine(self, obs, next_obs, action):
|
||||
# todo remove - is inherited - only used while implementing qtran
|
||||
current_q_values = self.q_net(obs)
|
||||
current_q_values = torch.gather(current_q_values, dim=-1, index=action)
|
||||
next_q_values_raw = self.target_q_net(next_obs).max(dim=-1)[0].reshape(-1, 1).detach()
|
||||
return current_q_values, next_q_values_raw
|
||||
|
||||
def local_qs(self, observations, actions):
|
||||
Q_jt = torch.zeros_like(actions) # placeholder to sum up individual q values
|
||||
features = []
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values_agent_i, features_agent_i = self.q_net(observations[:, agent_i]) # Individual action-value network
|
||||
q_values_agent_i = torch.gather(q_values_agent_i, dim=-1, index=actions[:, agent_i].unsqueeze(-1))
|
||||
Q_jt += q_values_agent_i
|
||||
features.append(features_agent_i)
|
||||
feature_sum = torch.stack(features, 0).sum(0) # (n_agents x hdim) -> hdim
|
||||
return Q_jt
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.batch_size: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
experience = self.buffer.sample(self.batch_size, cer=self.train_every_n_steps)
|
||||
|
||||
Q_jt_prime = self.local_qs(experience.observation, experience.action) # sum of individual q-vals
|
||||
Q_jt = None
|
||||
V_jt = None
|
||||
|
||||
pred_q, target_q_raw = torch.zeros((self.batch_size, 1)), torch.zeros((self.batch_size, 1))
|
||||
for agent_i in range(self.n_agents):
|
||||
q_values, next_q_values_raw = self._training_routine(experience.observation[:, agent_i],
|
||||
experience.next_observation[:, agent_i],
|
||||
experience.action[:, agent_i].unsqueeze(-1))
|
||||
pred_q += q_values
|
||||
target_q_raw += next_q_values_raw
|
||||
target_q = experience.reward + (1 - experience.done) * self.gamma * target_q_raw
|
||||
loss = torch.mean(self.reg_weight * pred_q + torch.pow(pred_q - target_q, 2))
|
||||
self._backprop_loss(loss)
|
@ -1,178 +0,0 @@
|
||||
import random
|
||||
from typing import Union, List
|
||||
from collections import deque
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from algorithms.common import BaseBuffer, Experience, BaseLearner, BaseDQN, mlp_maker
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class UDRLBuffer(BaseBuffer):
|
||||
def __init__(self, size):
|
||||
super(UDRLBuffer, self).__init__(0)
|
||||
self.experience = defaultdict(list)
|
||||
self.size = size
|
||||
|
||||
def add(self, experience):
|
||||
self.experience[experience.episode].append(experience)
|
||||
if len(self.experience) > self.size:
|
||||
self.sort_and_prune()
|
||||
|
||||
def select_time_steps(self, episode: List[Experience]):
|
||||
T = len(episode) # max horizon
|
||||
t1 = random.randint(0, T - 1)
|
||||
t2 = random.randint(t1 + 1, T)
|
||||
return t1, t2, T
|
||||
|
||||
def sort_and_prune(self):
|
||||
scores = []
|
||||
for k, episode_experience in self.experience.items():
|
||||
r = sum([e.reward for e in episode_experience])
|
||||
scores.append((r, k))
|
||||
sorted_scores = sorted(scores, reverse=True)
|
||||
return sorted_scores
|
||||
|
||||
def sample(self, batch_size, cer=0):
|
||||
random_episode_keys = random.choices(list(self.experience.keys()), k=batch_size)
|
||||
lsts = (obs, desired_rewards, horizons, actions) = [], [], [], []
|
||||
for ek in random_episode_keys:
|
||||
episode = self.experience[ek]
|
||||
t1, t2, T = self.select_time_steps(episode)
|
||||
t2 = T # TODO only good for episodic envs
|
||||
observation = episode[t1].observation
|
||||
desired_reward = sum([experience.reward for experience in episode[t1:t2]])
|
||||
horizon = t2 - t1
|
||||
action = episode[t1].action
|
||||
for lst, val in zip(lsts, [observation, desired_reward, horizon, action]):
|
||||
lst.append(val)
|
||||
return (torch.stack([torch.from_numpy(o) for o in obs], 0).float(),
|
||||
torch.tensor(desired_rewards).view(-1, 1).float(),
|
||||
torch.tensor(horizons).view(-1, 1).float(),
|
||||
torch.tensor(actions))
|
||||
|
||||
|
||||
class UDRLearner(BaseLearner):
|
||||
# Upside Down Reinforcement Learner
|
||||
def __init__(self, env, desired_reward, desired_horizon,
|
||||
behavior_fn=None, buffer_size=100, n_warm_up_episodes=8, best_x=20,
|
||||
batch_size=128, lr=1e-3, n_agents=1, train_every=('episode', 4), n_grad_steps=1):
|
||||
super(UDRLearner, self).__init__(env, n_agents, train_every, n_grad_steps)
|
||||
assert self.n_agents == 1, 'UDRL currently only supports single agent training'
|
||||
self.behavior_fn = behavior_fn
|
||||
self.buffer_size = buffer_size
|
||||
self.n_warm_up_episodes = n_warm_up_episodes
|
||||
self.buffer = UDRLBuffer(buffer_size)
|
||||
self.batch_size = batch_size
|
||||
self.mode = 'train'
|
||||
self.best_x = best_x
|
||||
self.desired_reward = desired_reward
|
||||
self.desired_horizon = desired_horizon
|
||||
self.lr = lr
|
||||
self.optimizer = torch.optim.AdamW(self.behavior_fn.parameters(), lr=lr)
|
||||
|
||||
self.running_loss = deque(maxlen=self.n_grad_steps*5)
|
||||
|
||||
def sample_exploratory_commands(self):
|
||||
top_x = self.buffer.sort_and_prune()[:self.best_x]
|
||||
# The exploratory desired horizon dh0 is set to the mean of the lengths of the selected episodes
|
||||
new_desired_horizon = np.mean([len(self.buffer.experience[k]) for _, k in top_x])
|
||||
# save all top_X cumulative returns in a list
|
||||
returns = [r for r, _ in top_x]
|
||||
# from these returns calc the mean and std
|
||||
mean_returns = np.mean([r for r, _ in top_x])
|
||||
std_returns = np.std(returns)
|
||||
# sample desired reward from a uniform distribution given the mean and the std
|
||||
new_desired_reward = np.random.uniform(mean_returns, mean_returns + std_returns)
|
||||
self.exploratory_commands = (new_desired_reward, new_desired_horizon)
|
||||
return torch.tensor([[new_desired_reward]]).float(), torch.tensor([[new_desired_horizon]]).float()
|
||||
|
||||
def on_new_experience(self, experience):
|
||||
self.buffer.add(experience)
|
||||
self.desired_reward = self.desired_reward - torch.tensor(experience.reward).float().view(1, 1)
|
||||
|
||||
def on_step_end(self, n_steps):
|
||||
one = torch.tensor([1.]).float().view(1, 1)
|
||||
self.desired_horizon -= one
|
||||
self.desired_horizon = self.desired_horizon if self.desired_horizon >= 1. else one
|
||||
|
||||
def on_episode_end(self, n_steps):
|
||||
self.desired_reward, self.desired_horizon = self.sample_exploratory_commands()
|
||||
|
||||
def get_action(self, obs) -> Union[int, np.ndarray]:
|
||||
o = torch.from_numpy(obs).unsqueeze(0) if self.n_agents <= 1 else torch.from_numpy(obs)
|
||||
bf_out = self.behavior_fn(o.float(), self.desired_reward, self.desired_horizon)
|
||||
dist = torch.distributions.Categorical(bf_out)
|
||||
sample = dist.sample()
|
||||
return [sample.item()]#[self.env.action_space.sample()]
|
||||
|
||||
def _backprop_loss(self, loss):
|
||||
# log loss
|
||||
self.running_loss.append(loss.item())
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
#torch.nn.utils.clip_grad_norm_(self.behavior_fn.parameters(), 10)
|
||||
self.optimizer.step()
|
||||
|
||||
def train(self):
|
||||
if len(self.buffer) < self.n_warm_up_episodes: return
|
||||
for _ in range(self.n_grad_steps):
|
||||
experience = self.buffer.sample(self.batch_size)
|
||||
bf_out = self.behavior_fn(*experience[:3])
|
||||
labels = experience[-1]
|
||||
#print(labels.shape)
|
||||
loss = nn.CrossEntropyLoss()(bf_out, labels.squeeze())
|
||||
mean_entropy = torch.distributions.Categorical(bf_out).entropy().mean()
|
||||
self._backprop_loss(loss - 0.03*mean_entropy)
|
||||
print(f'Running loss: {np.mean(list(self.running_loss)):.3f}\tRunning reward: {np.mean(self.running_reward):.2f}'
|
||||
f'\td_r: {self.desired_reward.item():.2f}\ttd_h: {self.desired_horizon.item()}')
|
||||
|
||||
|
||||
class BF(BaseDQN):
|
||||
def __init__(self, dims=[5*5*3, 64]):
|
||||
super(BF, self).__init__(dims)
|
||||
self.net = mlp_maker(dims, activation_last='identity')
|
||||
self.command_net = mlp_maker([2, 64], activation_last='sigmoid')
|
||||
self.common_branch = mlp_maker([64, 64, 64, 9])
|
||||
|
||||
|
||||
def forward(self, observation, desired_reward, horizon):
|
||||
command = torch.cat((desired_reward*(0.02), horizon*(0.01)), dim=-1)
|
||||
obs_out = self.net(torch.flatten(observation, start_dim=1))
|
||||
command_out = self.command_net(command)
|
||||
combined = obs_out*command_out
|
||||
out = self.common_branch(combined)
|
||||
return torch.softmax(out, -1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from environments.factory.simple_factory import SimpleFactory, DirtProperties, MovementProperties
|
||||
from algorithms.common import BaseDDQN
|
||||
from algorithms.vdn_learner import VDNLearner
|
||||
|
||||
N_AGENTS = 1
|
||||
|
||||
dirt_props = DirtProperties(clean_amount=3, gain_amount=0.2, max_global_amount=30,
|
||||
max_local_amount=5, spawn_frequency=1, max_spawn_ratio=0.05)
|
||||
move_props = MovementProperties(allow_diagonal_movement=True,
|
||||
allow_square_movement=True,
|
||||
allow_no_op=False)
|
||||
env = SimpleFactory(dirt_properties=dirt_props, movement_properties=move_props, n_agents=N_AGENTS, pomdp_radius=2,
|
||||
max_steps=400, omit_agent_slice_in_obs=False, combin_agent_slices_in_obs=True)
|
||||
|
||||
bf = BF()
|
||||
desired_reward = torch.tensor([200.]).view(1, 1).float()
|
||||
desired_horizon = torch.tensor([400.]).view(1, 1).float()
|
||||
learner = UDRLearner(env, behavior_fn=bf,
|
||||
train_every=('episode', 2),
|
||||
buffer_size=40,
|
||||
best_x=10,
|
||||
lr=1e-3,
|
||||
batch_size=64,
|
||||
n_warm_up_episodes=12,
|
||||
n_grad_steps=4,
|
||||
desired_reward=desired_reward,
|
||||
desired_horizon=desired_horizon)
|
||||
#learner.save(Path(__file__).parent / 'test' / 'testexperiment1337')
|
||||
learner.learn(500000)
|
@ -3,7 +3,7 @@ import numpy as np
|
||||
from pathlib import Path
|
||||
from collections import deque
|
||||
import pygame
|
||||
from typing import NamedTuple
|
||||
from typing import NamedTuple, Any
|
||||
import time
|
||||
|
||||
|
||||
@ -14,6 +14,7 @@ class Entity(NamedTuple):
|
||||
value_operation: str = 'none'
|
||||
state: str = None
|
||||
id: int = 0
|
||||
aux:Any=None
|
||||
|
||||
|
||||
class Renderer:
|
||||
@ -73,6 +74,20 @@ class Renderer:
|
||||
asset = pygame.transform.smoothscale(asset, (s, s))
|
||||
return asset
|
||||
|
||||
def visibility_rects(self, bp, view):
|
||||
rects = []
|
||||
for i in range(-self.view_radius, self.view_radius+1):
|
||||
for j in range(-self.view_radius, self.view_radius+1):
|
||||
if bool(view[self.view_radius+j, self.view_radius+i]):
|
||||
visibility_rect = bp['dest'].copy()
|
||||
visibility_rect.centerx += i*self.cell_size
|
||||
visibility_rect.centery += j*self.cell_size
|
||||
shape_surf = pygame.Surface(visibility_rect.size, pygame.SRCALPHA)
|
||||
pygame.draw.rect(shape_surf, self.AGENT_VIEW_COLOR, shape_surf.get_rect())
|
||||
shape_surf.set_alpha(64)
|
||||
rects.append(dict(source=shape_surf, dest=visibility_rect))
|
||||
return rects
|
||||
|
||||
def render(self, entities):
|
||||
for event in pygame.event.get():
|
||||
if event.type == pygame.QUIT:
|
||||
@ -88,13 +103,8 @@ class Renderer:
|
||||
blits.append(bp)
|
||||
if entity.name.lower() == 'agent':
|
||||
if self.view_radius > 0:
|
||||
visibility_rect = bp['dest'].inflate(
|
||||
(self.view_radius*2)*self.cell_size, (self.view_radius*2)*self.cell_size
|
||||
)
|
||||
shape_surf = pygame.Surface(visibility_rect.size, pygame.SRCALPHA)
|
||||
pygame.draw.rect(shape_surf, self.AGENT_VIEW_COLOR, shape_surf.get_rect())
|
||||
shape_surf.set_alpha(64)
|
||||
blits.appendleft(dict(source=shape_surf, dest=visibility_rect))
|
||||
vis_rects = self.visibility_rects(bp, entity.aux)
|
||||
blits.extendleft(vis_rects)
|
||||
if entity.state != 'blank':
|
||||
agent_state_blits = self.blit_params(
|
||||
Entity(entity.state, (entity.pos[0]+0.12, entity.pos[1]), 0.48, 'scale')
|
||||
|
@ -83,7 +83,7 @@ class SimpleFactory(BaseFactory):
|
||||
agents = []
|
||||
for i, agent in enumerate(self._agents):
|
||||
name, state = asset_str(agent)
|
||||
agents.append(Entity(name, agent.pos, 1, 'none', state, i+1))
|
||||
agents.append(Entity(name, agent.pos, 1, 'none', state, i+1, agent.temp_light_map))
|
||||
doors = []
|
||||
if self.parse_doors:
|
||||
for i, door in enumerate(self._doors):
|
||||
@ -229,7 +229,7 @@ if __name__ == '__main__':
|
||||
allow_no_op=False)
|
||||
factory = SimpleFactory(movement_properties=move_props, dirt_properties=dirt_props, n_agents=1,
|
||||
combin_agent_slices_in_obs=False, level_name='rooms', parse_doors=True,
|
||||
pomdp_radius=3, cast_shadows=True)
|
||||
pomdp_radius=2, cast_shadows=True)
|
||||
|
||||
n_actions = factory.action_space.n - 1
|
||||
_ = factory.observation_space
|
||||
|
@ -4,5 +4,5 @@ from environments.policy_adaption.natural_rl_environment.imgsource import *
|
||||
from environments.policy_adaption.natural_rl_environment.natural_env import *
|
||||
|
||||
if __name__ == "__main__":
|
||||
env = make('SpaceInvaders-v0', 'color') # gravitar, breakout, MsPacman, Space Invaders
|
||||
env = make('SpaceInvaders-v0', 'video') # gravitar, breakout, MsPacman, Space Invaders
|
||||
play.play(env, zoom=4)
|
Loading…
x
Reference in New Issue
Block a user