first steps to gym
dirt spawn frequency
This commit is contained in:
@ -11,7 +11,6 @@ from environments import helpers as h
|
||||
from environments.factory.renderer import Renderer
|
||||
from environments.factory.renderer import Entity
|
||||
|
||||
|
||||
DIRT_INDEX = -1
|
||||
|
||||
|
||||
@ -40,7 +39,7 @@ class GettingDirty(BaseFactory):
|
||||
height, width = self.state.shape[1:]
|
||||
self.renderer = Renderer(width, height, view_radius=0)
|
||||
|
||||
dirt = [Entity('dirt', [x, y], (min(self.state[DIRT_INDEX, x, y],1)), 'scale') for x, y in np.argwhere(self.state[DIRT_INDEX] > h.IS_FREE_CELL)]
|
||||
dirt = [Entity('dirt', [x, y], self.state[DIRT_INDEX, x, y]) for x, y in np.argwhere(self.state[DIRT_INDEX] > h.IS_FREE_CELL)]
|
||||
walls = [Entity('dirt', pos) for pos in np.argwhere(self.state[h.LEVEL_IDX] > h.IS_FREE_CELL)]
|
||||
agents = [Entity('agent', pos) for pos in np.argwhere(self.state[h.AGENT_START_IDX] > h.IS_FREE_CELL)]
|
||||
|
||||
@ -101,7 +100,10 @@ class GettingDirty(BaseFactory):
|
||||
|
||||
def calculate_reward(self, agent_states: List[AgentState]) -> (int, dict):
|
||||
# TODO: What reward to use?
|
||||
this_step_reward = 0
|
||||
current_dirt_amount = self.state[DIRT_INDEX].sum()
|
||||
dirty_tiles = len(np.nonzero(self.state[DIRT_INDEX]))
|
||||
|
||||
this_step_reward = -(dirty_tiles / current_dirt_amount)
|
||||
|
||||
for agent_state in agent_states:
|
||||
collisions = agent_state.collisions
|
||||
@ -113,8 +115,8 @@ class GettingDirty(BaseFactory):
|
||||
for entity in collisions:
|
||||
if entity != self.string_slices["dirt"]:
|
||||
self.monitor.add(f'agent_{agent_state.i}_vs_{self.slice_strings[entity]}', 1)
|
||||
self.monitor.set('dirt_amount', self.state[DIRT_INDEX].sum())
|
||||
self.monitor.set('dirty_tiles', len(np.nonzero(self.state[DIRT_INDEX])))
|
||||
self.monitor.set('dirt_amount', current_dirt_amount)
|
||||
self.monitor.set('dirty_tiles', dirty_tiles)
|
||||
return this_step_reward, {}
|
||||
|
||||
|
||||
@ -126,13 +128,13 @@ if __name__ == '__main__':
|
||||
monitor_list = list()
|
||||
for epoch in range(100):
|
||||
random_actions = [random.randint(0, 8) for _ in range(200)]
|
||||
state, r, done, _ = factory.reset()
|
||||
for action in random_actions:
|
||||
state, r, done, info = factory.step(action)
|
||||
env_state, reward, done_bool, _ = factory.reset()
|
||||
for agent_i_action in random_actions:
|
||||
env_state, reward, done_bool, info_obj = factory.step(agent_i_action)
|
||||
if render:
|
||||
factory.render()
|
||||
monitor_list.append(factory.monitor.to_pd_dataframe())
|
||||
print(f'Factory run {epoch} done, reward is:\n {r}')
|
||||
print(f'Factory run {epoch} done, reward is:\n {reward}')
|
||||
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
Reference in New Issue
Block a user