monitor now returning info objects

This commit is contained in:
steffen-illium
2021-05-31 13:58:24 +02:00
parent 7b4e60b0aa
commit 403d38dc24
7 changed files with 61 additions and 59 deletions

View File

@ -4,7 +4,9 @@ from collections import defaultdict
from stable_baselines3.common.callbacks import BaseCallback
from environments.helpers import IGNORED_DF_COLUMNS
from environments.logging.plotting import prepare_plot
import pandas as pd
class FactoryMonitor:
@ -59,16 +61,12 @@ class MonitorCallback(BaseCallback):
def __init__(self, env, filepath=Path('debug_out/monitor.pick'), plotting=True):
super(MonitorCallback, self).__init__()
self.filepath = Path(filepath)
self._monitor_list = list()
self._monitor_df = pd.DataFrame()
self.env = env
self.plotting = plotting
self.started = False
self.closed = False
@property
def monitor_as_df_list(self):
return [x.to_pd_dataframe() for x in self._monitor_list]
def __enter__(self):
self._on_training_start()
@ -89,11 +87,10 @@ class MonitorCallback(BaseCallback):
else:
# self.out_file.unlink(missing_ok=True)
with self.filepath.open('wb') as f:
pickle.dump(self.monitor_as_df_list, f, protocol=pickle.HIGHEST_PROTOCOL)
pickle.dump(self._monitor_df.reset_index(), f, protocol=pickle.HIGHEST_PROTOCOL)
if self.plotting:
print('Monitor files were dumped to disk, now plotting....')
# %% Imports
import pandas as pd
# %% Load MonitorList from Disk
with self.filepath.open('rb') as f:
monitor_list = pickle.load(f)
@ -111,14 +108,21 @@ class MonitorCallback(BaseCallback):
if column != 'episode':
df[f'{column}_roll'] = df[column].rolling(window=50).mean()
# result.tail()
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")), tag='monitor')
prepare_plot(filepath=self.filepath, results_df=df.filter(regex=(".+_roll")))
print('Plotting done.')
self.closed = True
def _on_step(self) -> bool:
if self.locals['dones'].item():
self._monitor_list.append(self.env.monitor)
else:
pass
for env_idx, done in enumerate(self.locals.get('dones', [])):
if done:
env_monitor_df = self.locals['infos'][env_idx]['monitor'].to_pd_dataframe()
columns = [col for col in env_monitor_df.columns if col not in IGNORED_DF_COLUMNS]
env_monitor_df = env_monitor_df.aggregate(
{col: 'mean' if 'amount' in col or 'count' in col else 'sum' for col in columns}
)
env_monitor_df['episode'] = len(self._monitor_df)
self._monitor_df = self._monitor_df.append([env_monitor_df])
else:
pass
return True