n agent experiments
This commit is contained in:
parent
db4dbc13ae
commit
35eae72a8d
@ -1,6 +1,7 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
try:
|
||||
# noinspection PyUnboundLocalVariable
|
||||
@ -32,7 +33,7 @@ import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
# Define a global studi save path
|
||||
start_time = int(time.time())
|
||||
start_time = 1634134997 # int(time.time())
|
||||
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
||||
|
||||
"""
|
||||
@ -136,7 +137,7 @@ if __name__ == '__main__':
|
||||
|
||||
# Train starts here ############################################################
|
||||
# Build Major Loop parameters, parameter versions, Env Classes and models
|
||||
if True:
|
||||
if False:
|
||||
for observation_mode in observation_modes.keys():
|
||||
for env_name in env_names:
|
||||
for model_cls in h.MODEL_MAP.values():
|
||||
@ -210,12 +211,12 @@ if __name__ == '__main__':
|
||||
pass
|
||||
pass
|
||||
# Train ends here ############################################################
|
||||
exit()
|
||||
|
||||
# Evaluation starts here #####################################################
|
||||
# First Iterate over every model and monitor "as trained"
|
||||
baseline_monitor_file = 'e_1_baseline_monitor.pick'
|
||||
if True:
|
||||
render = True
|
||||
if False:
|
||||
render = False
|
||||
for observation_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||
# For trained policy in study_root_path / identifier
|
||||
@ -233,22 +234,22 @@ if __name__ == '__main__':
|
||||
# Monitor Init
|
||||
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
|
||||
# Init Env
|
||||
env_factory = env_map[env_path.name][0](**env_kwargs)
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(100):
|
||||
obs = env_factory.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
action = model.predict(obs, deterministic=True)[0]
|
||||
env_state, step_r, done_bool, info_obj = env_factory.step(action)
|
||||
monitor.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
if render:
|
||||
env_factory.render()
|
||||
if done_bool:
|
||||
monitor.read_done(0, done_bool)
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
with env_map[env_path.name][0](**env_kwargs) as env_factory:
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(100):
|
||||
env_state = env_factory.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
action = model.predict(env_state, deterministic=True)[0]
|
||||
env_state, step_r, done_bool, info_obj = env_factory.step(action)
|
||||
monitor.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
if render:
|
||||
env_factory.render()
|
||||
if done_bool:
|
||||
monitor.read_done(0, done_bool)
|
||||
break
|
||||
print(f'Factory run {episode} done, reward is:\n {rew}')
|
||||
# Eval monitor outputs are automatically stored by the monitor object
|
||||
del model, env_kwargs, env_factory
|
||||
import gc
|
||||
@ -256,7 +257,9 @@ if __name__ == '__main__':
|
||||
gc.collect()
|
||||
|
||||
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
||||
ood_monitor_file = 'e_1_monitor.pick'
|
||||
n_agents = 4
|
||||
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
|
||||
|
||||
if True:
|
||||
for observation_mode in observation_modes:
|
||||
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
||||
@ -268,17 +271,17 @@ if __name__ == '__main__':
|
||||
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
||||
# Iteration
|
||||
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
||||
if (seed_path / f'e_1_monitor.pick').exists():
|
||||
if (seed_path / ood_monitor_file).exists():
|
||||
continue
|
||||
# retrieve model class
|
||||
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
||||
# Load both agents
|
||||
models = [model_cls.load(seed_path / 'model.zip') for _ in range(2)]
|
||||
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
|
||||
# Load old env kwargs
|
||||
with next(seed_path.glob('*.json')).open('r') as f:
|
||||
env_kwargs = simplejson.load(f)
|
||||
env_kwargs.update(
|
||||
n_agents=2, additional_agent_placeholder=None,
|
||||
n_agents=n_agents, additional_agent_placeholder=None,
|
||||
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
|
||||
|
||||
# Monitor Init
|
||||
@ -287,11 +290,12 @@ if __name__ == '__main__':
|
||||
with env_map[env_path.name][0](**env_kwargs) as env_factory:
|
||||
# Evaluation Loop for i in range(n Episodes)
|
||||
for episode in range(50):
|
||||
obs = env_factory.reset()
|
||||
env_state = env_factory.reset()
|
||||
rew, done_bool = 0, False
|
||||
while not done_bool:
|
||||
actions = [model.predict(obs[i], deterministic=False)[0]
|
||||
for i, model in enumerate(models)]
|
||||
actions = [model.predict(
|
||||
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
|
||||
deterministic=False)[0] for j, model in enumerate(models)]
|
||||
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
|
||||
monitor.read_info(0, info_obj)
|
||||
rew += step_r
|
||||
@ -352,6 +356,6 @@ if __name__ == '__main__':
|
||||
kind="box", height=4, aspect=.7, legend_out=True)
|
||||
c.set_xticklabels(rotation=65, horizontalalignment='right')
|
||||
plt.tight_layout(pad=2)
|
||||
plt.show()
|
||||
plt.savefig(study_root_path / f'results_{n_agents}_agents.png')
|
||||
|
||||
pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user