Individual Rewards

This commit is contained in:
Steffen Illium 2021-11-16 12:14:11 +01:00
parent b6bda84033
commit 0fe90f3ac0
11 changed files with 130 additions and 108 deletions

View File

@ -61,7 +61,8 @@ class BaseFactory(gym.Env):
mv_prop: MovementProperties = MovementProperties(),
obs_prop: ObservationProperties = ObservationProperties(),
parse_doors=False, record_episodes=False, done_at_collision=False,
verbose=False, doors_have_area=True, env_seed=time.time_ns(), **kwargs):
verbose=False, doors_have_area=True, env_seed=time.time_ns(), individual_rewards=False,
**kwargs):
if isinstance(mv_prop, dict):
mv_prop = MovementProperties(**mv_prop)
@ -94,6 +95,7 @@ class BaseFactory(gym.Env):
self.record_episodes = record_episodes
self.parse_doors = parse_doors
self.doors_have_area = doors_have_area
self.individual_rewards = individual_rewards
# Reset
self.reset()
@ -487,31 +489,32 @@ class BaseFactory(gym.Env):
def calculate_reward(self) -> (int, dict):
# Returns: Reward, Info
per_agent_info_dict = defaultdict(dict)
reward = 0
reward = {}
for agent in self[c.AGENT]:
per_agent_reward = 0
if self._actions.is_moving_action(agent.temp_action):
if agent.temp_valid:
# info_dict.update(movement=1)
reward -= 0.01
per_agent_reward -= 0.01
pass
else:
reward -= 0.05
per_agent_reward -= 0.05
self.print(f'{agent.name} just hit the wall at {agent.pos}.')
per_agent_info_dict[agent.name].update({f'{agent.name}_vs_LEVEL': 1})
elif h.EnvActions.USE_DOOR == agent.temp_action:
if agent.temp_valid:
# reward += 0.00
# per_agent_reward += 0.00
self.print(f'{agent.name} did just use the door at {agent.pos}.')
per_agent_info_dict[agent.name].update(door_used=1)
else:
# reward -= 0.00
# per_agent_reward -= 0.00
self.print(f'{agent.name} just tried to use a door at {agent.pos}, but failed.')
per_agent_info_dict[agent.name].update({f'{agent.name}_failed_door_open': 1})
elif h.EnvActions.NOOP == agent.temp_action:
per_agent_info_dict[agent.name].update(no_op=1)
# reward -= 0.00
# per_agent_reward -= 0.00
# Monitor Notes
if agent.temp_valid:
@ -522,7 +525,7 @@ class BaseFactory(gym.Env):
per_agent_info_dict[agent.name].update({f'{agent.name}_failed_action': 1})
additional_reward, additional_info_dict = self.calculate_additional_reward(agent)
reward += additional_reward
per_agent_reward += additional_reward
per_agent_info_dict[agent.name].update(additional_info_dict)
if agent.temp_collisions:
@ -531,6 +534,7 @@ class BaseFactory(gym.Env):
for other_agent in agent.temp_collisions:
per_agent_info_dict[agent.name].update({f'{agent.name}_vs_{other_agent.name}': 1})
reward[agent.name] = per_agent_reward
# Combine the per_agent_info_dict:
combined_info_dict = defaultdict(lambda: 0)
@ -539,7 +543,13 @@ class BaseFactory(gym.Env):
combined_info_dict[key] += value
combined_info_dict = dict(combined_info_dict)
self.print(f"reward is {reward}")
if self.individual_rewards:
self.print(f"rewards are {reward}")
reward = list(reward.values())
return reward, combined_info_dict
else:
reward = sum(reward.values())
self.print(f"reward is {reward}")
return reward, combined_info_dict
def render(self, mode='human'):

View File

@ -18,14 +18,15 @@ if __name__ == '__main__':
model_name = 'A2C_ItsDirt'
run_id = 0
determin = True
seed = 67
n_agents = 1
out_path = Path('study_out/e_1_ItsDirt/no_obs/dirt/A2C_ItsDirt/0_A2C_ItsDirt')
out_path = Path('study_out/e_1_Now_with_doors/no_obs/dirt/A2C_Now_with_doors/0_A2C_Now_with_doors')
model_path = out_path
with (out_path / f'env_params.json').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env_kwargs.update(additional_agent_placeholder=None, n_agents=n_agents)
env_kwargs.update(additional_agent_placeholder=None, n_agents=n_agents, max_steps=150)
if gain_amount := env_kwargs.get('dirt_prop', {}).get('gain_amount', None):
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
del env_kwargs['dirt_prop']['gain_amount']
@ -49,9 +50,9 @@ if __name__ == '__main__':
if n_agents > 1:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=True)[0] for j, model in enumerate(models)]
deterministic=determin)[0] for j, model in enumerate(models)]
else:
actions = models[0].predict(env_state, deterministic=True)[0]
actions = models[0].predict(env_state, deterministic=determin)[0]
if any([agent.pos in [door.pos for door in env.unwrapped[c.DOORS]]
for agent in env.unwrapped[c.AGENT]]):
print('On Door')

View File

@ -2,6 +2,7 @@ import sys
from pathlib import Path
from matplotlib import pyplot as plt
import numpy as np
import itertools as it
try:
# noinspection PyUnboundLocalVariable
@ -70,7 +71,7 @@ baseline_monitor_file = 'e_1_baseline_monitor.pick'
def policy_model_kwargs():
return dict(ent_coef=0.05)
return dict()
def dqn_model_kwargs():
@ -100,6 +101,7 @@ def load_model_run_baseline(seed_path, env_to_run):
# Load old env kwargs
with next(seed_path.glob('*.json')).open('r') as f:
env_kwargs = simplejson.load(f)
env_kwargs.update(done_at_collision=True)
# Monitor Init
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
# Init Env
@ -134,6 +136,7 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
env_kwargs = simplejson.load(f)
env_kwargs.update(
n_agents=n_agents,
done_at_collision=True,
**additional_kwargs_dict.get('post_training_kwargs', {}))
# Monitor Init
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
@ -168,6 +171,31 @@ def load_model_run_study(seed_path, env_to_run, additional_kwargs_dict):
gc.collect()
def start_mp_study_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / ood_monitor_file).exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_study,
it.product(paths,
(envs_map[policies_path.parent.name][0],),
(observation_modes[policies_path.parent.parent.name],))
)
def start_mp_baseline_run(envs_map, policies_path):
paths = list(y for y in policies_path.iterdir() if y.is_dir() and not (y / baseline_monitor_file).exists())
if paths:
import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
print("Starting MP with: ", pool._processes, " Processes")
_ = pool.starmap(load_model_run_baseline,
it.product(paths,
(envs_map[policies_path.parent.name][0],))
)
if __name__ == '__main__':
train_steps = 5e6
n_seeds = 3
@ -215,75 +243,74 @@ if __name__ == '__main__':
# Define parameter versions according with #1,2[1,0,N],3
observation_modes = {}
if False:
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_1': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=1,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_0': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder=0,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'seperate_N': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.COMBINED,
additional_agent_placeholder=None,
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
),
additional_env_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.NOT,
additional_agent_placeholder='N',
omit_agent_self=True,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
'in_lvl_obs': dict(
post_training_kwargs=
dict(obs_prop=ObservationProperties(
render_agents=AgentRenderOptions.LEVEL,
omit_agent_self=True,
additional_agent_placeholder=None,
frames_to_stack=3,
pomdp_r=2)
)
)})
observation_modes.update({
# No further adjustment needed
'no_obs': dict(
@ -398,15 +425,7 @@ if __name__ == '__main__':
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
# Iteration
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / baseline_monitor_file).exists())
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
result = pool.starmap(load_model_run_baseline,
it.product(paths,
(env_map[env_path.name][0],))
)
start_mp_baseline_run(env_map, policy_path)
# for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_baseline(seed_path)
@ -424,18 +443,9 @@ if __name__ == '__main__':
# First seed path version
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
# Iteration
import multiprocessing as mp
import itertools as it
pool = mp.Pool(mp.cpu_count())
paths = list(y for y in policy_path.iterdir() if y.is_dir() \
and not (y / ood_monitor_file).exists())
# result = pool.starmap(load_model_run_study,
# it.product(paths,
# (env_map[env_path.name][0],),
# (observation_modes[obs_mode],))
# )
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
load_model_run_study(seed_path, env_map[env_path.name][0], observation_modes[obs_mode])
start_mp_study_run(env_map, policy_path)
#for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
# load_model_run_study(seed_path, env_map[env_path.name][0], observation_modes[obs_mode])
print('OOD Tracking Done')
# Plotting
@ -497,15 +507,16 @@ if __name__ == '__main__':
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
# Plotting
fig, ax = plt.subplots(figsize=(11.7, 8.27))
# fig, ax = plt.subplots(figsize=(11.7, 8.27))
c = sns.catplot(data=df_melted[df_melted['obs_mode'] == observation_folder.name],
x='Measurement', hue='monitor', row='model', col='env', y='Score',
sharey=False, kind="box", height=4, aspect=.7, legend_out=True,
sharey=False, kind="box", height=4, aspect=.7, legend_out=False, legend=False,
showfliers=False)
c.set_xticklabels(rotation=65, horizontalalignment='right')
c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
# c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
c.fig.suptitle(f"Cat plot for {observation_folder.name}")
plt.tight_layout(pad=2)
# plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.tight_layout()
plt.savefig(study_root_path / f'results_{n_agents}_agents_{observation_folder.name}.png')
pass