Fick die Türen
This commit is contained in:
@ -1,4 +1,3 @@
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Iterable
|
||||
|
||||
@ -10,7 +9,7 @@ import yaml
|
||||
from gym.wrappers import FrameStack
|
||||
|
||||
from environments import helpers as h
|
||||
from environments.utility_classes import Actions, StateSlice, AgentState, MovementProperties, Zones
|
||||
from environments.utility_classes import Actions, StateSlices, AgentState, MovementProperties, Zones, DoorState
|
||||
|
||||
|
||||
# noinspection PyAttributeOutsideInit
|
||||
@ -23,6 +22,7 @@ class BaseFactory(gym.Env):
|
||||
@property
|
||||
def observation_space(self):
|
||||
agent_slice = self.n_agents if self.omit_agent_slice_in_obs else 0
|
||||
agent_slice = 1 if self.combin_agent_slices_in_obs else agent_slice
|
||||
if self.pomdp_radius:
|
||||
return spaces.Box(low=0, high=1, shape=(self._state.shape[0] - agent_slice, self.pomdp_radius * 2 + 1,
|
||||
self.pomdp_radius * 2 + 1), dtype=np.float32)
|
||||
@ -47,7 +47,7 @@ class BaseFactory(gym.Env):
|
||||
omit_agent_slice_in_obs=False, **kwargs):
|
||||
assert (combin_agent_slices_in_obs != omit_agent_slice_in_obs) or \
|
||||
(not combin_agent_slices_in_obs and not omit_agent_slice_in_obs), \
|
||||
'Both options are exclusive'
|
||||
'Both options are exclusive'
|
||||
assert frames_to_stack != 1 and frames_to_stack >= 0, "'frames_to_stack' cannot be negative or 1."
|
||||
|
||||
self.movement_properties = movement_properties
|
||||
@ -61,13 +61,23 @@ class BaseFactory(gym.Env):
|
||||
self.frames_to_stack = frames_to_stack
|
||||
|
||||
self.done_at_collision = False
|
||||
_actions = Actions(self.movement_properties)
|
||||
self._actions = _actions + self.additional_actions
|
||||
|
||||
self._actions = Actions(self.movement_properties)
|
||||
self._actions.register_additional_items(self.additional_actions)
|
||||
|
||||
self._state_slices = StateSlices()
|
||||
level_filepath = Path(__file__).parent / h.LEVELS_DIR / f'{self.level_name}.txt'
|
||||
parsed_level = h.parse_level(level_filepath)
|
||||
self._level = h.one_hot_level(parsed_level)
|
||||
self._state_slices = StateSlice(n_agents)
|
||||
parsed_doors = h.one_hot_level(parsed_level, h.DOOR)
|
||||
if parsed_doors.any():
|
||||
self._doors = parsed_doors
|
||||
level_slices = ['level', 'doors']
|
||||
else:
|
||||
level_slices = ['level']
|
||||
offset = len(level_slices)
|
||||
self._state_slices.register_additional_items([*level_slices,
|
||||
*[f'agent#{i}' for i in range(offset, n_agents + offset)]])
|
||||
if 'additional_slices' in kwargs:
|
||||
self._state_slices.register_additional_items(kwargs.get('additional_slices'))
|
||||
self._zones = Zones(parsed_level)
|
||||
@ -87,7 +97,8 @@ class BaseFactory(gym.Env):
|
||||
|
||||
def reset(self) -> (np.ndarray, int, bool, dict):
|
||||
self._steps = 0
|
||||
self._agent_states = []
|
||||
self._agent_states = list()
|
||||
|
||||
# Agent placement ...
|
||||
agents = np.zeros((self.n_agents, *self._level.shape), dtype=np.int8)
|
||||
floor_tiles = np.argwhere(self._level == h.IS_FREE_CELL)
|
||||
@ -96,10 +107,18 @@ class BaseFactory(gym.Env):
|
||||
for i, (x, y) in enumerate(floor_tiles[:self.n_agents]):
|
||||
agents[i, x, y] = h.IS_OCCUPIED_CELL
|
||||
agent_state = AgentState(i, -1)
|
||||
agent_state.update(pos=[x, y])
|
||||
agent_state.update(pos=(x, y))
|
||||
self._agent_states.append(agent_state)
|
||||
# state.shape = level, agent 1,..., agent n,
|
||||
self._state = np.concatenate((np.expand_dims(self._level, axis=0), agents), axis=0)
|
||||
if 'doors' in self._state_slices.values():
|
||||
self._door_states = [DoorState(i, tuple(pos)) for i, pos
|
||||
in enumerate(np.argwhere(self._doors == h.IS_OCCUPIED_CELL))]
|
||||
self._state = np.concatenate((np.expand_dims(self._level, axis=0),
|
||||
np.expand_dims(self._doors, axis=0),
|
||||
agents), axis=0)
|
||||
|
||||
else:
|
||||
self._state = np.concatenate((np.expand_dims(self._level, axis=0), agents), axis=0)
|
||||
# Returns State
|
||||
return None
|
||||
|
||||
@ -108,9 +127,13 @@ class BaseFactory(gym.Env):
|
||||
obs = self._build_per_agent_obs(0)
|
||||
elif self.n_agents >= 2:
|
||||
obs = np.stack([self._build_per_agent_obs(agent_i) for agent_i in range(self.n_agents)])
|
||||
else:
|
||||
raise ValueError('n_agents cannot be smaller than 1!!')
|
||||
return obs
|
||||
|
||||
def _build_per_agent_obs(self, agent_i: int) -> np.ndarray:
|
||||
first_agent_slice = self._state_slices.AGENTSTARTIDX
|
||||
# Todo: make this more efficient!
|
||||
if self.pomdp_radius:
|
||||
global_pos = self._agent_states[agent_i].pos
|
||||
x0, x1 = max(0, global_pos[0] - self.pomdp_radius), global_pos[0] + self.pomdp_radius + 1
|
||||
@ -118,13 +141,10 @@ class BaseFactory(gym.Env):
|
||||
obs = self._state[:, x0:x1, y0:y1]
|
||||
if obs.shape[1] != self.pomdp_radius * 2 + 1 or obs.shape[2] != self.pomdp_radius * 2 + 1:
|
||||
obs_padded = np.full((obs.shape[0], self.pomdp_radius * 2 + 1, self.pomdp_radius * 2 + 1), 1)
|
||||
try:
|
||||
a_pos = np.argwhere(obs[h.AGENT_START_IDX + agent_i] == h.IS_OCCUPIED_CELL)[0]
|
||||
except IndexError:
|
||||
print('NO')
|
||||
a_pos = np.argwhere(obs[first_agent_slice + agent_i] == h.IS_OCCUPIED_CELL)[0]
|
||||
obs_padded[:,
|
||||
abs(a_pos[0]-self.pomdp_radius):abs(a_pos[0]-self.pomdp_radius)+obs.shape[1],
|
||||
abs(a_pos[1]-self.pomdp_radius):abs(a_pos[1]-self.pomdp_radius)+obs.shape[2]] = obs
|
||||
abs(a_pos[0]-self.pomdp_radius):abs(a_pos[0]-self.pomdp_radius)+obs.shape[1],
|
||||
abs(a_pos[1]-self.pomdp_radius):abs(a_pos[1]-self.pomdp_radius)+obs.shape[2]] = obs
|
||||
obs = obs_padded
|
||||
else:
|
||||
obs = self._state
|
||||
@ -135,7 +155,7 @@ class BaseFactory(gym.Env):
|
||||
if self.combin_agent_slices_in_obs:
|
||||
agent_obs = np.sum(obs[[key for key, val in self._state_slices.items() if 'agent' in val]],
|
||||
axis=0, keepdims=True)
|
||||
obs = np.concatenate((obs[:h.AGENT_START_IDX], agent_obs, obs[h.AGENT_START_IDX+self.n_agents:]))
|
||||
obs = np.concatenate((obs[:first_agent_slice], agent_obs, obs[first_agent_slice+self.n_agents:]))
|
||||
return obs
|
||||
else:
|
||||
return obs
|
||||
@ -150,9 +170,7 @@ class BaseFactory(gym.Env):
|
||||
done = False
|
||||
|
||||
# Move this in a seperate function?
|
||||
agent_states = list()
|
||||
for agent_i, action in enumerate(actions):
|
||||
agent_i_state = AgentState(agent_i, action)
|
||||
if self._actions.is_moving_action(action):
|
||||
pos, valid = self.move_or_colide(agent_i, action)
|
||||
elif self._actions.is_no_op(action):
|
||||
@ -160,16 +178,14 @@ class BaseFactory(gym.Env):
|
||||
else:
|
||||
pos, valid = self.do_additional_actions(agent_i, action)
|
||||
# Update state accordingly
|
||||
agent_i_state.update(pos=pos, action_valid=valid)
|
||||
agent_states.append(agent_i_state)
|
||||
self._agent_states[agent_i].update(pos=pos, action_valid=valid, action=action)
|
||||
|
||||
for i, collision_vec in enumerate(self.check_all_collisions(agent_states, self._state.shape[0])):
|
||||
agent_states[i].update(collision_vector=collision_vec)
|
||||
for i, collision_vec in enumerate(self.check_all_collisions(self._agent_states, self._state.shape[0])):
|
||||
self._agent_states[i].update(collision_vector=collision_vec)
|
||||
if self.done_at_collision and collision_vec.any():
|
||||
done = True
|
||||
|
||||
self._agent_states = agent_states
|
||||
reward, info = self.calculate_reward(agent_states)
|
||||
reward, info = self.calculate_reward(self._agent_states)
|
||||
|
||||
if self._steps >= self.max_steps:
|
||||
done = True
|
||||
@ -189,8 +205,12 @@ class BaseFactory(gym.Env):
|
||||
def check_collisions(self, agent_state: AgentState) -> np.ndarray:
|
||||
pos_x, pos_y = agent_state.pos
|
||||
# FixMe: We need to find a way to spare out some dimensions, eg. an info dimension etc... a[?,]
|
||||
# https://numpy.org/doc/stable/reference/arrays.indexing.html#boolean-array-indexing
|
||||
collisions_vec = self._state[:, pos_x, pos_y].copy() # "vertical fiber" at position of agent i
|
||||
collisions_vec[h.AGENT_START_IDX + agent_state.i] = h.IS_FREE_CELL # no self-collisions
|
||||
collisions_vec[self._state_slices.AGENTSTARTIDX + agent_state.i] = h.IS_FREE_CELL # no self-collisions
|
||||
if 'door' in self._state_slices.values():
|
||||
collisions_vec[self._state_slices.by_name('doors')] = h.IS_FREE_CELL # no door-collisions
|
||||
|
||||
if agent_state.action_valid:
|
||||
# ToDo: Place a function hook here
|
||||
pass
|
||||
@ -201,8 +221,8 @@ class BaseFactory(gym.Env):
|
||||
|
||||
def do_move(self, agent_i: int, old_pos: (int, int), new_pos: (int, int)) -> None:
|
||||
(x, y), (x_new, y_new) = old_pos, new_pos
|
||||
self._state[agent_i + h.AGENT_START_IDX, x, y] = h.IS_FREE_CELL
|
||||
self._state[agent_i + h.AGENT_START_IDX, x_new, y_new] = h.IS_OCCUPIED_CELL
|
||||
self._state[agent_i + self._state_slices.AGENTSTARTIDX, x, y] = h.IS_FREE_CELL
|
||||
self._state[agent_i + self._state_slices.AGENTSTARTIDX, x_new, y_new] = h.IS_OCCUPIED_CELL
|
||||
|
||||
def move_or_colide(self, agent_i: int, action: int) -> ((int, int), bool):
|
||||
old_pos, new_pos, valid = self._check_agent_move(agent_i=agent_i, action=self._actions[action])
|
||||
@ -215,7 +235,8 @@ class BaseFactory(gym.Env):
|
||||
return old_pos, valid
|
||||
|
||||
def _check_agent_move(self, agent_i, action: str):
|
||||
agent_slice = self._state[h.AGENT_START_IDX + agent_i] # horizontal slice from state tensor
|
||||
agent_slice_idx = self._state_slices.AGENTSTARTIDX + agent_i
|
||||
agent_slice = self._state[agent_slice_idx] # horizontal slice from state tensor
|
||||
agent_pos = np.argwhere(agent_slice == 1)
|
||||
if len(agent_pos) > 1:
|
||||
raise AssertionError('Only one agent per slice is allowed.')
|
||||
@ -226,17 +247,50 @@ class BaseFactory(gym.Env):
|
||||
x_new = x + x_diff
|
||||
y_new = y + y_diff
|
||||
|
||||
if h.DOORS in self._state_slices.values():
|
||||
door = [door for door in self._door_states if door.pos == (x, y)]
|
||||
if door:
|
||||
door = door[0]
|
||||
if door.is_open:
|
||||
pass
|
||||
else: # door.is_closed:
|
||||
local_door_map = self._state[self._state_slices.by_name(h.LEVEL)][door.pos[0]-1:door.pos[0]+2,
|
||||
door.pos[1]-1:door.pos[1]+2]
|
||||
local_agent_map = np.zeros_like(local_door_map)
|
||||
local_agent_map[tuple(np.subtract(door.pos, self._agent_states[agent_i]._last_pos))] += 1
|
||||
local_agent_map[tuple(np.subtract(door.pos, (x_new, y_new)))] += 1
|
||||
if np.all(local_door_map == h.HORIZONTAL_DOOR_MAP):
|
||||
# This is a horizontal Door Configuration
|
||||
if np.sum(local_agent_map[0]) >= 2 or np.sum(local_agent_map[-1]) >= 2:
|
||||
# The Agent goes back to where he came from
|
||||
pass
|
||||
else:
|
||||
# The Agent tries to go through a closed door
|
||||
return (x, y), (x, y), h.NOT_VALID
|
||||
else:
|
||||
# This is a vertical Door Configuration
|
||||
if np.sum(local_agent_map[:, 0]) >= 2 or np.sum(local_agent_map[:, -1]) >= 2:
|
||||
# The Agent goes back to where he came from
|
||||
pass
|
||||
else:
|
||||
return (x, y), (x, y), h.NOT_VALID
|
||||
else:
|
||||
pass
|
||||
else:
|
||||
pass
|
||||
|
||||
valid = h.check_position(self._state[h.LEVEL_IDX], (x_new, y_new))
|
||||
|
||||
return (x, y), (x_new, y_new), valid
|
||||
|
||||
def agent_i_position(self, agent_i: int) -> (int, int):
|
||||
positions = np.argwhere(self._state[h.AGENT_START_IDX + agent_i] == h.IS_OCCUPIED_CELL)
|
||||
positions = np.argwhere(self._state[self._state_slices.AGENTSTARTIDX + agent_i] == h.IS_OCCUPIED_CELL)
|
||||
assert positions.shape[0] == 1
|
||||
pos_x, pos_y = positions[0] # a.flatten()
|
||||
return pos_x, pos_y
|
||||
|
||||
def free_cells(self, excluded_slices: Union[None, List[int], int] = None) -> np.array:
|
||||
|
||||
excluded_slices = excluded_slices or []
|
||||
assert isinstance(excluded_slices, (int, list))
|
||||
excluded_slices = excluded_slices if isinstance(excluded_slices, list) else [excluded_slices]
|
||||
@ -245,9 +299,14 @@ class BaseFactory(gym.Env):
|
||||
|
||||
if excluded_slices:
|
||||
# Todo: Is there a cleaner way?
|
||||
inds = list(range(self._state.shape[0]))
|
||||
excluded_slices = [inds[x] if x < 0 else x for x in excluded_slices]
|
||||
state = self._state[[x for x in inds if x not in excluded_slices]]
|
||||
# inds = list(range(self._state.shape[0]))
|
||||
# excluded_slices = [inds[x] if x < 0 else x for x in excluded_slices]
|
||||
# state = self._state[[x for x in inds if x not in excluded_slices]]
|
||||
|
||||
# Yes there is!
|
||||
bool_array = np.full(self._state.shape[0], True)
|
||||
bool_array[excluded_slices] = False
|
||||
state = self._state[bool_array]
|
||||
|
||||
free_cells = np.argwhere(state.sum(0) == h.IS_FREE_CELL)
|
||||
np.random.shuffle(free_cells)
|
||||
|
Reference in New Issue
Block a user